zbMATH — the first resource for mathematics

Energy and angular momentum of charged rotating black holes. (English) Zbl 0863.53065
Summary: We show that the pseudotensors of Einstein, Tolman, Landau and Lifshitz, Papapetrou, and Weinberg essentially coincide for any Kerr-Schild metric if calculations are carried out in Kerr-Schild Cartesian coordinates. This generalizes a previous result by Gürses and Gürsey that dealt only with the pseudotensors of Einstein and Landau-Lifshitz. We compute exactly the energy and angular momentum distributions for the Kerr-Newman metric in Kerr-Schild Cartesian coordinates and compare the results with those obtained by using different definitions of quasilocal mass, which unlike pseudotensors do not agree for all Kerr-Schild metrics.

53Z05 Applications of differential geometry to physics
83C57 Black holes
83C40 Gravitational energy and conservation laws; groups of motions
Full Text: DOI
[1] Brown, J. D., and York, J. W., Jr. (1993).Phys. Rev. D 47, 1407.
[2] Møller, C. (1958).Ann. Phys. (NY) 4, 347. · Zbl 0081.22002
[3] Tolman, R. C. (1934).Relativity, Thermodynamics and Cosmology (Oxford University Press, Oxford). · Zbl 0009.41304
[4] Landau, L. D., and Lifshitz, E. M. (1987).The Classical Theory of Fields (Pergamon Press, Oxford). · Zbl 0178.28704
[5] Møller, C. (1961).Ann. Phys. (NY) 12, 118. · Zbl 0096.22003
[6] Deser, S. (1963).Phys. Lett. 7 42.
[7] Komar, A. (1959).Phys. Rev. 113, 934. · Zbl 0086.22103
[8] Bergqvist, G. (1992).Class. Quantum Gray. 9, 1753. · Zbl 0774.53038
[9] Chellathurai, V., and Dadhich, N. (1990).Class. Quantum Grav. 7, 361; Rosen, N., and Virbhadra, K. S. (1993).Gen. Rel. Grav. 25, 429; Virbhadra, K. S. and Parikh, J. C. (1993).Phys. Lett. B 317, 312; (1994).Phys. Lett. B 331, 302; Bernstein, D. H., and Tod, K. P. (1994).Phys. Rev. D 49, 2808; Rosen, N. (1994).Gen. Rel. Grav. 26, 319; de Felice, F., Yu, Y., and Coriasco, S. (1994).Gen. Rel. Grav. 26, 813;
[10] Cooperstock, F. I. (1993). InTopics on Quantum Gravity and Beyond. Essays in honor of L. Witten on his retirement, F. Mansouri and J. J. Scanio, eds. (World Scientific, Singapore); (1994).Gen. Rel. Grav. 26, 323.
[11] Virbhadra, K. S. (1990).Phys. Rev. D 41, 1086; (1990).Phys. Rev. D 42, 1066,2919.
[12] Cooperstock, F. I., and Richardson, S. A. (1992). InProc. 4th Canadian Conference on General Relativity and Relativistic Astrophysics, G. Kunstatter, D. E. Vincent, J. G. Williams, eds. (World Scientific, Singapore).
[13] Virbhadra, K. S. (1992).Pramana-J. Phys. 38, 31.
[14] Chamorro, A., and Virbhadra, K. S. (1995).Pramana-J. Phys. 45, 181.
[15] Tod, K. P. (1995). Personal communication.
[16] Penrose, R. (1982).Proc. Roy. Soc. Lond. 381, 53.
[17] Gürses, M., and Gürsey, F. (1975).J. Math. Phys. 16, 2385.
[18] Papapetrou, A. (1948).Proc. R. Irish. Acad. A52, 11; Gupta, S. N. (1954).Phys. Rev. 96, 1683.
[19] Weinberg, S. (1972).Gravitation and Cosmology: Principles and Applications of General Theory of Relativity (John Wiley & Sons New York).
[20] Hayward, S. A. (1994).Phys. Rev. D 49, 831.
[21] Debney, G. C., Kerr, R. P., and Schild, A. (1969).J. Math. Phys. 10, 1842.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.