zbMATH — the first resource for mathematics

Numerical methods for forward-backward stochastic differential equations. (English) Zbl 0861.65131
This paper presents numerical methods for approximating the solutions of forward-backward stochastic differential equations of the form \[ X_t=x+\int^t_0 b(s,X_s,Y_s,Z_s)ds+ \int^t_0\sigma(s,X_s,Y_s)dW_s, \] \[ Y_t=g(X_T)+ \int^T_t\widehat b(s,X_s,Y_s,Z_s)ds+ \int^T_t\widehat\sigma(s,X_s,Y_s,Z_s)dW_s, \] where \(t\in[0,T]\), \(\{W_t\}\) is a \(d\)-dimensional Brownian motion, \((X,Y,Z)\) takes values in \(\mathbb{R}^m\times\mathbb{R}^m\times\mathbb{R}^{m\times d}\), and \(b\), \(\widehat b\), \(\sigma\), \(\widehat\sigma\), and \(g\) are smooth. The bulk of the paper is devoted to introducing approximations needed to devise the numerical methods, proving that the resulting approximate solutions converge to the actual solution, and establishing the rate of this convergence.

65C99 Probabilistic methods, stochastic differential equations
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
34F05 Ordinary differential equations and systems with randomness
Full Text: DOI
[1] ANTONELLI, F. 1993. Backward forward stochastic differential equations. Ann. Appl. Probab. 3 777 793. · Zbl 0780.60058 · doi:10.1214/aoap/1177005363
[2] CVITANIC, J. and MA, J. 1996. Hedging options for a large investor and forward backward ŚDE’s. Ann. Appl. Probab. 6 370 398. · Zbl 0856.90011 · doi:10.1214/aoap/1034968136
[3] DAVIS, P. 1975. Interpolation and Approximation. Dover, New York. · Zbl 0329.41010
[4] DOUGLAS, J., JR. 1983. Finite difference methods for two-phase incompressible flow in porous media. SIAM J. Numer. Anal. 20 681 696. JSTOR: · Zbl 0519.76107 · doi:10.1137/0720046 · links.jstor.org
[5] DOUGLAS, J., JR. and RUSSELL, T. F. 1982. Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19 871 885. JSTOR: · Zbl 0492.65051 · doi:10.1137/0719063 · links.jstor.org
[6] DUFFIE, D. and EPSTEIN, L. G. 1992. Stochastic differential utility. Econometrica 61 353 394. JSTOR: · Zbl 0768.90006 · doi:10.1016/0304-4068(92)90028-6 · links.jstor.org
[7] DUFFIE, D., GEOFFARD, P-Y. and SKIADAS, C. 1992. Efficient and equilibrium allocations with stochastic differential utility. · Zbl 0804.90018 · doi:10.1016/0304-4068(94)90002-7
[8] DUFFIE, D., MA, J. and YONG, J. 1994. Black’s console rate conjecture. Ann. Appl. Probab. 5 356 382. · Zbl 0830.60052
[9] GILBARG, D. and TRUDINGER, N. S. 1983. Elliptic Partial Differential Equations of Second Order. Springer, Berlin. · Zbl 0562.35001
[10] KLOEDEN, P. E. and PLATEN, E. 1992. Numerical Solution of Stochastic Differential Equations. Springer, Berlin. · Zbl 0752.60043
[11] LADy ZENSKAJA, O. A., SOLONNIKOV, V. A. and URAL’CEVA, N. N. 1968. Linear and Quasilinear Equations of Parabolic Ty pe. Amer. Math. Soc., Providence, RI.
[12] MA, J., PROTTER, P. and YONG, J. 1994. Solving forward backward stochastic differential equations explicitly a four step scheme. Probab. Theory Related Fields 98 339 359. · Zbl 0794.60056 · doi:10.1007/BF01192258
[13] WEST LAFAy ETTE, INDIANA 47907-1395 E-MAIL: douglas@math.purdue.edu majin@math.purdue.edu protter@math.purdue.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.