×

zbMATH — the first resource for mathematics

Positive line bundles on arithmetic varieties. (English) Zbl 0861.14018
For an arithmetic variety (maybe singular at its generic fiber) we prove several fundamental results.
We prove the Hilbert-Samuel formula. When the generic fiber is smooth, this was done by H. Gillet and C. Soulé [Invent. Math. 110, No. 3, 473-543 (1992; Zbl 0777.14008)].
We prove the Nakai-Moishezon theorem. As a consequence, we prove a successive minima theorem for the variety (not necessarily linear).
We prove the Bogomolov conjecture for the torus \(\mathbb{G}^n_m\).

MSC:
14G40 Arithmetic varieties and schemes; Arakelov theory; heights
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
11G35 Varieties over global fields
PDF BibTeX Cite
Full Text: DOI
References:
[1] S. Ju. Arakelov, An intersection theory for divisors on an arithmetic surface, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1179 – 1192 (Russian).
[2] Jean-Michel Bismut and Éric Vasserot, The asymptotics of the Ray-Singer analytic torsion associated with high powers of a positive line bundle, Comm. Math. Phys. 125 (1989), no. 2, 355 – 367. · Zbl 0687.32023
[3] P. Deligne, Le déterminant de la cohomologie, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 93 – 177 (French).
[4] Gerd Faltings, Calculus on arithmetic surfaces, Ann. of Math. (2) 119 (1984), no. 2, 387 – 424. · Zbl 0559.14005
[5] Gerd Faltings, Lectures on the arithmetic Riemann-Roch theorem, Annals of Mathematics Studies, vol. 127, Princeton University Press, Princeton, NJ, 1992. Notes taken by Shouwu Zhang. · Zbl 0744.14016
[6] Henri Gillet and Christophe Soulé, Arithmetic intersection theory, Inst. Hautes Études Sci. Publ. Math. 72 (1990), 93 – 174 (1991). · Zbl 0741.14012
[7] Henri Gillet and Christophe Soulé, An arithmetic Riemann-Roch theorem, Invent. Math. 110 (1992), no. 3, 473 – 543. · Zbl 0777.14008
[8] Robin Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics, Vol. 156, Springer-Verlag, Berlin-New York, 1970. Notes written in collaboration with C. Musili. · Zbl 0208.48901
[9] Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109 – 203; ibid. (2) 79 (1964), 205 – 326. · Zbl 0122.38603
[10] Serge Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983. · Zbl 0528.14013
[11] Michel Laurent, Équations diophantiennes exponentielles, Invent. Math. 78 (1984), no. 2, 299 – 327 (French). · Zbl 0554.10009
[12] P. Sarnak, Betti numbers of congruence groups, Preprint. · Zbl 0843.11027
[13] L. Szpiro, Sur les propriétés numériques du dualisant relatif d’une surface arithmétique, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 229 – 246 (French). · Zbl 0759.14018
[14] Gang Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990), no. 1, 99 – 130. · Zbl 0706.53036
[15] Shouwu Zhang, Positive line bundles on arithmetic surfaces, Ann. of Math. (2) 136 (1992), no. 3, 569 – 587. · Zbl 0788.14017
[16] Shouwu Zhang, Admissible pairing on a curve, Invent. Math. 112 (1993), no. 1, 171 – 193. · Zbl 0795.14015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.