zbMATH — the first resource for mathematics

Martingales without tears. (English) Zbl 0860.62087
Summary: This pedagogical paper presents a casual introduction to martingales, or fair gambling processes. Our objective is to describe the concept of a martingale and its application to common statistical tests used in the analysis of survival data, but without the mathematical rigor required for formal proofs. We use heuristic arguments to demonstrate that the logrank statistic evaluated over followup time is a fair gambling process, and introduce some mathematical notation and terminology along the way. We then employ the counting process approach to show that the logrank statistic computed over followup time can be expressed as the difference of two martingale transforms, and thus is a martingale. These ideas are first introduced in the context of a discrete time process, and are then generalized to a continuous time process. With slight modifications, the same ideas extend from the logrank to other weighted Mantel-Haenszel statistics computed over time.
62P10 Applications of statistics to biology and medical sciences; meta analysis
Full Text: DOI
[1] O. O. Aalen, ?Nonparameteric inference for a family of counting processes,?Ann. Statist. vol. 6 pp. 701-726, 1978. · Zbl 0389.62025 · doi:10.1214/aos/1176344247
[2] P. K. Andersen and O. Borgan, ?Counting process models for life history data: A review (with discussion),?Scand. J. Statist. vol. 12 pp. 97-158, 1985. · Zbl 0584.62176
[3] P. K. Anderson, O. Borgan, R. D. Gill and N. Keiding, ?Linear non-parametric tests for comparison of counting processes, with application to censored survival data (with discussion),?Internet. Statist. Rev. vol. 50 pp. 219-258, 1982. Amendment: vol 52(225), 1984. · Zbl 0504.62038 · doi:10.2307/1402489
[4] P. K. Andersen, O. Borgan, R. D. Gill and N. Keiding,Statistical Models Based on Counting Processes, Springer-Verlag: New York, 1993. · Zbl 0769.62061
[5] Y. S. Chow and H. Teicher,Probability Theory: Independence, Interchangability, Martingales, Springer-Verlag: New York, 1978.
[6] D. R. Cox, ?Regression models and life tables (with discussion),?J. Roy. Statist. Soc., vol. 34 pp. 187-220, 1972. · Zbl 0243.62041
[7] J. Cuzick, ?Asymptotic properties of censored linear rank tests,?Ann. Statist. vol. 13 pp. 133-141, 1985. · Zbl 0584.62069 · doi:10.1214/aos/1176346581
[8] T. R. Fleming and D. R. Harrington,Counting Processes and Survival Analysis, John Wiley and Sons, Inc.: New York, 1991. · Zbl 0727.62096
[9] E. A. Gehan, ?A generalized Wilcoxon test for comparing arbitrarily single-censored samples,?Biometrika vol. 53 pp. 203-223, 1965. · Zbl 0133.41901
[10] R. D. Gill, ?Censoring and stochastic integrals,? Mathematical Centre Tracts 124, Mathematisch Centrum, Amsterdam, 1980.
[11] R. D. Gill, ?Understanding Cox’s regression model: a martingale approach,?J Amer. Statist. Assoc. vol. 79 pp. 441-447, 1984. · Zbl 0546.62074 · doi:10.2307/2288288
[12] P. Hall, ?Martingales,?Encyclopedia of Statistical Science vol. 5. Editors-in-Chief: S. Kotz and N. L. Johnson, Associate Editor: C. B. Read, John Wiley & Sons Inc.: New York, 1985.
[13] D. P. Harrington and T. R. Fleming, ?A class of rank test procedures for censored survival data,?Biometrika vol. 69 pp. 133-143, 1982. · Zbl 0532.62026 · doi:10.1093/biomet/69.3.553
[14] K. K. G. Lan and J. T. Wittes, ?Rank tests for survival analysis: A comparison by analogy with games,?Biometrics vol. 41 pp. 1063-1069, 1985. · Zbl 0615.62047 · doi:10.2307/2530979
[15] K. K. G. Lan and J. T. Wittes, ?Linear rank tests for survival data: Equivalence of two formulations,?The Amer Statistician vol. 44 pp. 23-26, 1990. · doi:10.2307/2684951
[16] N. Mantel, ?Evaluation of survival data and two new rank order statistics arising in its consideration,?Cancer Chemotherapy Reports vol. 50 pp. 163-170, 1966.
[17] N. Mantel and W. Haenszel, ?Statistical aspects of the analysis of data from retrospective studies of disease,?J of the National Cancer Institute vol. 22 pp. 719-748, 1959.
[18] I. McKeague and K. Utikal, ?Stochastic calculus as a tool in survival analysis: a review,?Applied Math. & Computation vol. 14 pp. 1-27, 1989. · Zbl 0706.62023
[19] K. C. Mehrotra, J. E. Michalek and D. Mahalko, ?A relationship between two forms of linear rank procesures for censored data,?Biometrika vol. 69 pp. 674-676, 1981. · Zbl 0493.62084 · doi:10.1093/biomet/69.3.674
[20] R. Peto and J. Peto, ?Asymptotically efficient rank-invariant test procedures,?Journal of the Royal Statistical Society, Series A vol. 135 pp. 185-206, 1972. · Zbl 0306.62012 · doi:10.2307/2344317
[21] R. A. Prentice, ?Linear rank tests with right censored data,?Biometrika vol. 65 pp. 167-179, 1978. · Zbl 0377.62024 · doi:10.1093/biomet/65.1.167
[22] R. L. Prentice and P. Marek, ?A qualitative discrepancy between censored data rank tests,?Biometrics vol. 35 pp. 861-867, 1979. · doi:10.2307/2530120
[23] R. H. Randles and D. A. Wolfe,Introduction to the Theory of Nonparametric Statistics. John Wiley & Sons: New York, 1979. · Zbl 0529.62035
[24] I. R. Savage, ?Contributions to the theory of rank order statistics?the two sample case,?Ann. Math. Statist. vol. 27 pp. 590-615, 1956. · Zbl 0073.13904 · doi:10.1214/aoms/1177728170
[25] T. Sellke and D. Siegmund, ?Sequential analysis of the proportional hazards model,?Biometrika vol. 70 pp. 315-326, 1983. · Zbl 0528.62068 · doi:10.1093/biomet/70.2.315
[26] E. Slud, ?Sequential linear tests for two-sample censored survival data,?Ann. Statist vol. 12 pp. 551-571, 1984. · Zbl 0547.62054 · doi:10.1214/aos/1176346505
[27] E. Slud and L. J. Wei, ?Two sample repeated significance tests based on the modified Wilcoxon statistic,?J Amer. Statist. Assoc. vol. 77 pp. 862-868, 1982. · Zbl 0508.62070 · doi:10.2307/2287319
[28] R. E. Tarone and J. Ware, ?On distribution-free tests for equality of survival distributions,?Biometrika vol. 64 pp. 150-160, 1977. · Zbl 0352.62046 · doi:10.1093/biomet/64.1.156
[29] A. A. Tsiatis, ?Repeated significance testing for a general class of statistics used in censored survival analysis,?Journal of the American Statistical Association vol. 77 pp. 855-861, 1982. · Zbl 0511.62045 · doi:10.2307/2287318
[30] F. Wilcoxon, ?Individual comparisons by ranking methods,?Biometrics Bulletin vol. 1 pp. 80-83, 1945. · doi:10.2307/3001968
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.