×

zbMATH — the first resource for mathematics

Triangles. I: Shapes. (English) Zbl 0860.51009
This is the first of a series of three papers that examine Euclidean triangle geometry via complex cross-ratios [as developed, for example, by I. M. Yaglom in his book ‘Complex numbers in geometry’, Academic Press, New York (1966; Zbl 0147.20201)]. In this first paper, the author examines analytic methods for proving similarity theorems. She observes that, by using cross-ratios, any Euclidean triangle may be classified up to similarity by a single complex number, which she calls the shape of the triangle. In particular, she discusses the shapes of Miquel triangles. Finally, she examines two general shape theorems, the second of which has the theorems of Napoleon and Morley as special cases.

MSC:
51M05 Euclidean geometries (general) and generalizations
51N20 Euclidean analytic geometry
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Barotti, A.,Una proprietà degli n-agoni che si ottengono transformando in una affinità un n-agono regolare. Boll Un. Mat. Ital (3)10 (1955), 96–98. · Zbl 0064.39806
[2] Hodgson, J. E.,Orthocentric properties of the plane directed n-line. Trans. Amer. Math. Soc.13 (1912), 199–231. · JFM 43.0662.06
[3] Johnson, R. A.,Modern geometry. Houghton Mifflin, New York, 1929. · JFM 55.0979.01
[4] Kapteyn, W.,Over de merkwaardige punten van der driehoek. Verh. Konink. Acad. Wetensch. Belgiē (1) III, Nr. 3 (1895), 3–33. · JFM 26.0665.03
[5] Kimberling, C.,Central points and central lines in the plane of a triangle. Math. Mag.67 (1994), 163–187. · Zbl 0821.51014 · doi:10.2307/2690608
[6] Jung, H. E. W.,Über die Lage der Hauptträgheitsachsen von Punktsystem in der Ebene. Arch. Math. Phys. (3)13 (1908), 285–286. · JFM 39.0761.01
[7] Kürschák, J.,Anwendung der komplexen Zahlen zum Beweise eines elementargeometrisches Satzes. Arch. Math. Phys. (3)8 (1905), 285–286. · JFM 36.0544.02
[8] Lester, J. A.,Points of difference: Relative infinity in the Euclidean plane. Mitt. Math. Ges. Hamburg13 (1993), 93–117. · Zbl 0817.51003
[9] Lester, J. A.,Triangles II: Complex triangle coordinates. (to appear in Aequationes Math.). · Zbl 0860.51010
[10] Lester, J. A.,Triangles III: Complex triangle functions. (to appear in Aequationes Math.). · Zbl 0868.51018
[11] Lester, J. A.,A generalization of Napoleon’s theorem. C.R. Math. Rep. Acad. Sci. Canada16 (1994), 253–257. · Zbl 0837.51007
[12] Meyer, W. Fr.,Über den Ptolemäischen Satz. Arch. Math. Phys. (3)7 (1904), 1–15. · JFM 35.0519.03
[13] Meyers L. F.,Solution to problem 464. Crux. Math.6 (1980), 185–187.
[14] Morley, F. andMorley, F. V.,Inversive geometry. Chelsea, New York, 1954.
[15] Neumann, B. H.,Some remarks on polygons. J. London Math. Soc.16 (1941), 230–245. · Zbl 0060.34801 · doi:10.1112/jlms/s1-16.4.230
[16] Rigby, J.,Napoleon revisited. J. Geom.33 (1988), 129–146. · Zbl 0655.52003 · doi:10.1007/BF01230612
[17] Samaga, H.-J.,A unified approach to Miquel’s theorem and its degenerations. InGeometry and differential geometry. [Lecture Notes in Mathematics, No. 792]. Springer, Berlin, 1980, pp. 132–142. · Zbl 0433.51005
[18] Schaeffer, H. andBenz, W.,Peczar-Doppelverhältnisidentitäten zum allgemeinen Satz von Miquel. Abh. Math. Sem. Univ. Hamburg42 (1974), 228–235. · Zbl 0307.50014 · doi:10.1007/BF02993550
[19] Shick, J.,Beziehung zwischen Isogonalcentrik und Invariantentheorie. Bayer. Akad. Wiss. Sitzungsber.30 (1900), 249–272.
[20] Schwerdtfeger, H.,The geometry of complex numbers. Dover, New York, 1979. · Zbl 0484.51007
[21] Wells, D.,The Penguin dictionary of curious and interesting geometry. Penguin Books, London, 1991. · Zbl 0856.00005
[22] Yaglom, I. M.,Complex numbers in geometry. Academic Press, New York, 1968. · Zbl 0147.20201
[23] Zwikker, C.,The advanced geometry of plane curves and their applications. Dover, New York, 1963. · Zbl 0151.26501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.