×

zbMATH — the first resource for mathematics

The interaction of an isotropic field of acoustic waves with a shock wave. (English) Zbl 0858.76074
(Authors’ abstract.) Moore’s (1954) inviscid linear analysis of the interaction of a shock wave with a plane acoustic wave is evaluated by comparison to computation. The analysis is then extended to study the interaction of an isotropic field of acoustic waves with a normal shock wave. The evolution of fluctuating kinetic energy, sound level and thermodynamic fluctuations across the shock wave are examined in detail.
The interaction of acoustic fluctuations with the shock is notably different from that of vortical fluctuations. The kinetic energy of the acoustic fluctuations decreases across the shock wave for Mach numbers between 1.25 and 1.8. For Mach numbers exceeding 3, the kinetic energy amplifies by levels that significantly exceed those found in the interaction of vortical fluctuations with the shock. Upon interacting with the shock wave, the acoustic waves generate vortical fluctuations whose contribution to the far-field kinetic energy increases with increasing Mach number. The level of sound increases across the shock wave. The rise in the sound pressure level across the shock varies from 5 to 20 dB for Mach number varying from 1.5 to 5. The fluctuations behind the shock wave are nearly isentropic for Mach number less than 1.5, beyond which the generation of entropy fluctuations becomes significant.

MSC:
76Q05 Hydro- and aero-acoustics
76L05 Shock waves and blast waves in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/0021-9991(92)90324-R · Zbl 0759.65006 · doi:10.1016/0021-9991(92)90324-R
[2] Lee, J. Fluid Mech. 264 pp 373– (1994)
[3] Crow, J. Fluid Mech. 37 pp 529– (1969)
[4] DOI: 10.1063/1.857960 · Zbl 0745.76034 · doi:10.1063/1.857960
[5] Chu, J. Aero. Sci. 19 pp 433– (1952) · doi:10.2514/8.2335
[6] Ribner, AIAA J. 25 pp 436– (1987)
[7] Chang, J. Aero. Sci. 24 pp 675– (1957) · doi:10.2514/8.3939
[8] Carrier, Q. Appl. Maths 6 pp 367– (1949)
[9] Cambon, J. Fluid Mech. 257 pp 641– (1993)
[10] Burgers, Koninklijke Nederlandsche Akademie Van Wetenschappen, Proc. XLIX pp 273– (1946)
[11] Adams, J. Aero. Sci. 16 pp 685– (1949) · doi:10.2514/8.11884
[12] DOI: 10.1121/1.1912431 · doi:10.1121/1.1912431
[13] Lee, J. Fluid Mech. 251 pp 533– (1993)
[14] Kovasznay, J. Aero. Sci. 20 pp 657– (1953) · doi:10.2514/8.2793
[15] DOI: 10.1007/BF00187225 · doi:10.1007/BF00187225
[16] DOI: 10.1063/1.1705881 · Zbl 0081.41702 · doi:10.1063/1.1705881
[17] DOI: 10.1063/1.858767 · Zbl 0799.76029 · doi:10.1063/1.858767
[18] DOI: 10.1063/1.858443 · doi:10.1063/1.858443
[19] Zang, AIAA J. 22 pp 13– (1984)
[20] DOI: 10.1063/1.1691825 · Zbl 0172.53203 · doi:10.1063/1.1691825
[21] DOI: 10.1016/0022-460X(68)90137-5 · doi:10.1016/0022-460X(68)90137-5
[22] Lighthill, Phil. Mag. 40 pp 214– (1949) · doi:10.1080/14786444908521720
[23] DOI: 10.1146/annurev.fl.26.010194.001235 · doi:10.1146/annurev.fl.26.010194.001235
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.