×

zbMATH — the first resource for mathematics

Boundary integral formulation for 2D and 3D thermal problems exhibiting a linearly varying stochastic conductivity. (English) Zbl 0858.73078
This work examines steady-state heat conduction in a stochastic heterogeneous medium, where the thermal conductivity varies linearly along one direction, and its slope is a sum of a constant part and a zero-mean random part. As the first step, the governing Laplace equation is solved using a coordinate transformation of independent spatial variables, and the exact Green functions in both two and three dimensions are obtained for a linearly varying conductivity profile. In addition, a boundary integral equation statement in which the Green functions appear as kernels is concurrently obtained.
Next, material stochasticity is introduced, and the perturbation approach is employed for deriving the mean value and covariance of the Green functions up to the second order. Perturbations are also used to solve the discretized boundary integral equation, so that mean vectors and covariance matrices can be obtained for the response, temperature and heat flux. An example involving steady-state temperature distribution in a block where conductivity varies due to a buried heat source illustrates the method. Finally, comparisons are made with Monte Carlo simulations.

MSC:
74S15 Boundary element methods applied to problems in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
80A20 Heat and mass transfer, heat flow (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abdullah H.; Clements D. L.; Ang T. A. 1993: A boundary element method for the solution of a class of heat conduction problems for inhomogeneous media, Engng. Anal. Bound. Elem. 11: 313-318
[2] Bains R. S.; Sugimoto J. 1994. 3D thermal stress numerical convergence analysis of a hot spot in a thin pipe using the boundary element method, Engng. Anal. Bound. Elem. 14: 267-275
[3] Bialecki R.; Kuhn G. 1993: Boundary element solution of heat conduction problems in multizone bodies of nonlinear material. Int. J. Num. Meth. Engng, 36: 799-809 · Zbl 0825.73910
[4] Boley B. A.; Weiner J. H. 1960: Theory of Thermal Stresses, J. Wiley, New York · Zbl 0095.18407
[5] Brebbia C. A.; Telles J. C. F.; Wrobel L. C. 1984: Boundary Element Techniques, Springer-Verlag, Berlin · Zbl 0556.73086
[6] Burczynski T. 1985: The boundary element method for stochastic potential problems. Appl. Math. Model. 9: 189-194 · Zbl 0586.60051
[7] Burczynski T. 1993: Stochastic boundary element methods: Computational methodology and applications Chapter 12 in Probabilistic Structural Mechanics, IUTAM Symposium Eds. P.Spanos and W.Wu, Springer-Verlag, Berlin
[8] Cheng A. H. D. 1984: Darcy’s flow with variable permeability: A boundary integral solution, Water Resources Res. 20: 980-984.
[9] Chuang Y. K.; SzekelyJ. 1971: On the use of Green’s functions for solving melting or solidification problems Int. J. Heat Mass Transfer, 14: 1285-1294
[10] Clements D. L. 1980: A boundary integral equation method for the numerical solution of a second order elliptic equation with variable coefficients, J. Aust. Math. Soc. 22(B), 218-228 · Zbl 0452.65070
[11] Drewniak J. 1985: Boundary elements for random heat conduction problems, Engng. Analysis 2, 168-169
[12] El Harrouni K.; Ouazar D.; Wrobel L. C.; Brebbia C. A. 1992: Dual reciprocity boundary element method for heterogeneous porous media, pp. 151-160 in Boundary Element Technology VII, Ed. C. A.Brebbia and M. S.Ingber, Elsevier Applied Science, London
[13] Garabedian P. R. 1963: Partial Differential Equations, J. Wiley, New York
[14] Gipson G. S. 1987: Basic Concepts and Recent Developments in the Poisson Equation, Boundary Element Fundamentals Series, Comp. Mech. Publ., Southampton · Zbl 0708.73088
[15] Gradshteyn I. S.; Ryzhik I. M. 1980: Tables of Integrals, Series and Products, translated by A. Jeffrey, Academic Press, New York · Zbl 0521.33001
[16] Hill J. M.; Dewynne J. N. 1981: Heat Conduction, Blackwell Sci. Publ., Oxford
[17] Hinch E. J. 1991: Perturbation Methods, Cambridge University Press, Cambridge · Zbl 0746.34001
[18] Ho V.; ApostolakisG. 1992: Compburn IIIe-A computer code for probabilistic fire risk analysis, Nucl. Engng. Des. 138: 357-373
[19] Kisu H. 1994: Boundary integral equations for thermal stress, Bound. Elem. Comm., 5: 112-116
[20] Mahajerin, E. 1989: On the numerical solution of heat conduction with temperature-dependent conductivity, pp. 281-286, Struct. Mech. in Reactor Techn. Conf., Anaheim, California, Ed. A. H. Hadjian Vol. B., SMIRT Publication
[21] Manolis G. D. 1993: The ground as a random medium, Chapter 15 in Boundary Element Techniques in Geomechanics, Eds. G. D.Manolis and T. G.Davies, Elsevier Applied Science, London
[22] Manolis G. D.; Bagtzoglou A. C. 1992: A numerical comparative study of wave propagation in inhomogeneous and random media, Comp. Mech. 10, 397-413 · Zbl 0775.73092
[23] Manolis, G. D.; Shaw, R. P. 1995: Wave motions in stochastic heterogeneous media: A Green’s function approach, Engng. Anal. Round. Elem., 15, to appear.
[24] Nakagiri S.; Suzuki K.; Hisada T. 1983: Stochastic boundary element method applied to stress analysis, pp. 439-448 in Boundary Elements V, Eds. C. A.Brebbia, T.Futugami and M.Tanaka, Springer-Verlag, Berlin · Zbl 0546.73065
[25] Nicolai B. M.; De Baerdemaeker J. 1993: Computation of heat conduction in materials with random variable thermophysical properties, Int. J. Num. Meth. Engng., 36: 523-536 · Zbl 0825.73991
[26] Noda N. 1991: Thermal stresses in materials with temperature-dependent properties, Appl. Mech. Rev., 44(9): 383-397
[27] Nowacki W. 1975: Dynamic Problems of Thermoelasticity, Noordhoff, Amsterdam · Zbl 0364.73001
[28] Ozisik M. N. 1980: Heat Transfer, Mc Graw-Hill, New York
[29] Press W. H.; Flannery S. A.; Teukolsky S. A.; Vetterling W. T. 1989: Numerical Recipes, Cambridge University Press, Cambridge · Zbl 0698.65001
[30] Rangoni R. 1986: Numerical solution of generalized Laplace equation by coupling BEM and the perurbation method, Appl. Math. Modelling 1: 266-270 · Zbl 0624.65114
[31] Scofano Neto F.; Cotta R. M.; Mikhailov M. D. 1990: Alternative approach to the integral transform solution of non-homogeneous diffusion problems pp. 39-48 in Advanced Computational Methods in Heat Transfer, Vol. 1, Eds: L. C.Wrobel, C. A.Brebbia and A. J.Nowak, Springer-Verlag, Berlin
[32] Shaw R. P.: 1994: Green’s functions for heterogeneous media potential problems Engng. Anal. Bound. Elements 13: 219-221
[33] Shaw R. P.; Gipson G. S., 1995: A boundary integral equation formulation for linearly layered, potential problems in two and three dimensions, in Proc. 17th Int. Bound. Element Conf., eds. C. A.brebbia et al., Computational Mechanics Publications Southampton · Zbl 0841.73069
[34] Shaw R. P.; Makris N. 1992: Green’s functions for Helmholtz and Laplace equations in heterogeneous media, Engng. Anal. Bound. Elem., 10: 179-183
[35] Shaw R. P.; Wrobel L. C.; Nowak A. J. 1993: On simple solutions of some potential problems for heterogeneous media, Bound. Elem. Abstract 4, 72-74
[36] Sunden B.; 1989: Transiet conduction in a cylindrical shell with a time-varying incident surface heat flux and conventive and radiative surface cooling, Int. J. Heat Mass Transfer 32: 575-584
[37] Torquato S. 1991: Random heterogeneous media: microstructure and improved bounds on effective properties, Appl. Mech. Rev., 44: 37-76
[38] Vanmarke E.; Shinozuka M.; Nakagiri S.; Schueller G. I.; Grigoriu M. 1986: Random fields and stochastic finite elements, Struct. Safety, 3: 143-166
[39] Wilson E. L.; Bathe K. J.; Peterson F. E.; 1974: Finite element analysis f linear and nonlinear heat transfer, Nuc. Engng. Design 29: 110-124
[40] Wilson D. G.; Solomon A. D.; Boggs P. T.; Eds. 1978: Moving Boundary Problems, Academic Press, New York
[41] Wrobel L. C.; Brebbia C. A.; Eds. 1992: Boundary Elements in Heat Transfer, Elsevier Applied Sci., London
[42] Wrobel L. C.; Brebbia C. A.; Nowak A. J.; Eds. 1990: Advanced Computational Methods in Heat Transfer, Springer-Verlag, Berlin · Zbl 0826.00033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.