Slivnik, Tomaž Short proof of Galvin’s theorem on the list-chromatic index of a bipartite multigraph. (English) Zbl 0857.05034 Comb. Probab. Comput. 5, No. 1, 91-94 (1996). The author gives a brief self-contained proof of a result by F. Galvin [J. Comb. Theory, Ser. B 63, No. 1, 153-158 (1995; Zbl 0826.05026)] saying that in every bipartite multigraph the list chromatic index equals the chromatic index. Reviewer: D.Cvetković (Beograd) Cited in 7 Documents MSC: 05C15 Coloring of graphs and hypergraphs Keywords:Galvin’s theorem; bipartite multigraph; list chromatic index; chromatic index PDF BibTeX XML Cite \textit{T. Slivnik}, Comb. Probab. Comput. 5, No. 1, 91--94 (1996; Zbl 0857.05034) Full Text: DOI References: [1] DOI: 10.1002/jgt.3190130112 · Zbl 0674.05026 · doi:10.1002/jgt.3190130112 [2] DOI: 10.1016/0012-365X(89)90199-4 · Zbl 0674.05027 · doi:10.1016/0012-365X(89)90199-4 [3] DOI: 10.1007/BF02582936 · Zbl 0606.05027 · doi:10.1007/BF02582936 [4] DOI: 10.1007/BF01204715 · Zbl 0756.05049 · doi:10.1007/BF01204715 [5] Vizing, Diskret. Analiz. 29 pp 3– (1992) [6] DOI: 10.1016/0095-8956(92)90028-V · Zbl 0694.05054 · doi:10.1016/0095-8956(92)90028-V [7] Erd?s, Congressus Numerantium 26 pp 125– (1980) [8] DOI: 10.1090/S0273-0979-1993-00430-0 · Zbl 0792.05053 · doi:10.1090/S0273-0979-1993-00430-0 [9] Häggkvist, On the list-chromatic index of bipartite graphs (1993) [10] Häggkvist, New Bounds on the List-Chromatic Index of the Complete Graph and Other Simple Graphs (1993) [11] DOI: 10.2307/2312726 · Zbl 0109.24403 · doi:10.2307/2312726 [12] DOI: 10.1006/jctb.1995.1011 · Zbl 0826.05026 · doi:10.1006/jctb.1995.1011 [13] DOI: 10.1007/BF00998632 · Zbl 0411.05039 · doi:10.1007/BF00998632 [14] Kahn, J. Combinatorial Theory This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.