zbMATH — the first resource for mathematics

The consistency principle for games in strategic form. (English) Zbl 0856.90147
Summary: We start with giving an axiomatic characterization of the Nash equilibrium (NE) correspondence in terms of consistency, converse consistency, and one-person rationality. Then axiomatizations are given of the strong NE correspondence, the coalition-proof NE correspondence and the semi-strong NE. In all these characterizations consistency and suitable variants of converse consistency play a role. Finally, the dominant NE correspondence is characterized. We also indicate how to generalize our results to Bayesian and extensive games.

91A12 Cooperative games
Full Text: DOI
[1] Aumann RJ (1959) Acceptable points in general cooperative n-person games. In: Tucker AW, Luce RD (eds) Contributions to the Theory of Games IV. Princeton NJ Princeton University Press 287-324 · Zbl 0085.13005
[2] Aumann RJ (1987) Game theory. In: Eatwell J, Milgate M, Newman P (eds) The New Palgrave, A Dictionary of Economics, Vol 2. London Macmillan 460-482
[3] Bernheim BD, Peleg B, Whinston MD (1987) Coalition-proof Nash equilibria I. Concepts. Journal of Economic Theory 42: 1-12 · Zbl 0619.90090 · doi:10.1016/0022-0531(87)90099-8
[4] Borm PEM, Tijs SH (1992) Strategic claim games corresponding to an NTU-game. Games and Economic Behavior 4: 58-71 · Zbl 0777.90088 · doi:10.1016/0899-8256(92)90005-D
[5] Davis M, Maschler M (1965) The kernel of a cooperative game. Naval Research Logistics Quarterly 12: 223-259 · Zbl 0204.20202 · doi:10.1002/nav.3800120303
[6] Driessen TSH (1991) A survey of consistency properties in cooperative game theory. SIAM Review 33: 43-59 · Zbl 0732.90092 · doi:10.1137/1033003
[7] Driessen TSH (1992) On the reduced game property for the axiomatization of the ?-value. Discussion Paper, University of Twente The Netherlands
[8] Einy E, Peleg B (1991) Coalition-proof communication equilibria. Discussion Paper, The Hebrew University of Jerusalem · Zbl 0880.90143
[9] Harsanyi JC (1959) A bargaining model for cooperative n-person games. In: Tucker AW, Luce RD (eds) Contributions to the Theory of Games IV. Princeton NJ Princeton University Press 324-358
[10] Harts S, Mas-Colell A (1989) Potential, value and consistency, Econometrica 57: 589-614 · Zbl 0675.90103 · doi:10.2307/1911054
[11] Kalai E, Samet D (1984) Persistent equilibria. International Journal of Game Theory 13: 129-144 · Zbl 0541.90097 · doi:10.1007/BF01769811
[12] Kaplan G (1992) Sophisticated outcomes and coalitional stability. MSc Thesis Department of Statistics Tel-Aviv University (in English)
[13] Kohlberg E, Mertens J-F (1986) On the strategic stability of equilibria. Econometrica 54: 1003-1037 · Zbl 0616.90103 · doi:10.2307/1912320
[14] Kuhn HW (1953) Extensive games and the problem of information. In: Kuhn HW, Tucker AW (eds) Contributions to the Theory of Games I. Princeton NJ Princeton University Press 193-216
[15] Lensberg T (1988) Stability and the Nash solution. Journal of Economic Theory 45: 330-341 · Zbl 0657.90106 · doi:10.1016/0022-0531(88)90273-6
[16] Luce RD, Raiffa H (1957) Games and Decisions. New York Wiley · Zbl 0084.15704
[17] Maschler M (1990) Consistency. In: Ichiishi T, Neyman A, Tauman Y (eds) Game Theory and Applications. San Diego California Academic Press 183-186
[18] Maschler M, Potters JAM, Tijs SH (1992) The general nucleous and the reduced game property. International Journal of Game Theory 21: 85-106 · Zbl 0764.90100 · doi:10.1007/BF01240254
[19] Monderer D, Shapley LS (1992) Potential games. Discussion Paper Department of Economics Los Angeles California UCLA
[20] Moulin H, Peleg B (1982) Cores of effectivity functions and implementation theory. Journal of Mathematical Economics 10: 115-145 · Zbl 0481.90004 · doi:10.1016/0304-4068(82)90009-X
[21] Myerson RB (1978) Refinements of the Nash equilibrium concept. International Journal of Game Theory 7: 73-80 · Zbl 0392.90093 · doi:10.1007/BF01753236
[22] Myerson RB (1991) Game Theory. Cambridge, Massachusetts Harvard University Press
[23] Nash JF (1951) Non-cooperative games. Annals of Mathematics 54: 286-295 · Zbl 0045.08202 · doi:10.2307/1969529
[24] Neyman A (1989) Uniqueness of the Shapley value. Games and Economics Behavior 1: 116-118 · Zbl 0755.90097 · doi:10.1016/0899-8256(89)90008-0
[25] Peleg B (1985) An axiomatization of the core of cooperative games without side-payments. Journal of Mathematical Economics 14: 203-214 · Zbl 0581.90102 · doi:10.1016/0304-4068(85)90020-5
[26] Peleg B (1986) On the reduced game property and its converse. International Journal of Game Theory 15: 187-200. A correction (1987), International Journal of Game Theory 16: 290 · Zbl 0629.90099 · doi:10.1007/BF01769258
[27] Peters H, Tijs SH, Zarzuelo J (1991) Consistency and implementation of the Kalai-Smorodinski bargaining solution. Report M 91-09, University of Limburg Maastricht The Netherlands
[28] Potters JAM (1991) An axiomatization of the nucleolus. International Journal of Game Theory 19: 365-373 · Zbl 0732.90094 · doi:10.1007/BF01766427
[29] Selten R (1975) Reexamination of the perfectness concept for equilibrium points in extensive games. International Journal of Game Theory 4: 25-55 · Zbl 0312.90072 · doi:10.1007/BF01766400
[30] Snijders C (1991) Axiomatization of the nucleolus. Preprint No. 676, Department of Mathematics University of Utrecht The Netherlands · Zbl 0835.90130
[31] Sobolev AI (1975) The characterization of optimality principles in cooperative games by functional equations. In: Vorobev NN (ed) Mathematical Methods in the Social Sciences 6: 94-151 (Vilnius, in Russian)
[32] Tadenuma K (1992) Reduced games, consistency and the core. International Journal of Game Theory 20: 325-334 · Zbl 0751.90104 · doi:10.1007/BF01271129
[33] Thomson W (1990) The consistency princple. In: Ichiishi T, Neyman A, Tauman Y (eds) Game Theory and Applications San Diego California Academic Press 187-215
[34] Thomson W (1991) On the computational implications of converse consistency. Discussion Paper, University of Rochester
[35] Thomson W, Lensberg T (1989) Axiomatic theory of bargaining with a variable number of agents. Cambridge University Press · Zbl 0745.90089
[36] Van Damme EEC (1987) Stability and Perfection of Nash Equilibria. Berlin Springer-Verlag · Zbl 0696.90087
[37] Wako J (1991a) Strong cores and competitive equilibria of an exchange market with indivisible goods. International Economic Review 32: 843-852 · Zbl 0747.90022 · doi:10.2307/2527037
[38] Wako (1991b) Some properties of weak domination in an exchange market with indivisible goods. The Economic Studies Quarterly 42: 303-314 · Zbl 0747.90022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.