zbMATH — the first resource for mathematics

Boundary layer flow and heat transfer on a continuous moving wavy surface. (English) Zbl 0856.76017
Summary: The effect of spatially stationary surface waves on the forced convection induced by a moving surface in an otherwise quiescent fluid is examined. We consider the boundary layer regime where the Reynolds number is very large, and assume that the surface waves have \(O(1)\) amplitude and wavelength. The boundary layer approximation is valid and the resulting parabolic equations are solved using the Keller-box scheme. Detailed results for the local skin-friction coefficient are presented, as are results for the local Nusselt number for both the cases of a constant wall temperature and a constant wall heat flux.

76D10 Boundary-layer theory, separation and reattachment, higher-order effects
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI
[1] Sakiadis, B. C.: Boundary layers on continuous solid surfaces. A.I.Ch.E. J.7, 26-28 (1961).
[2] Tsou, F. K., Sparrow, E. M., Goldstein, R. J.: Flow and heat transfer in the boundary layer on a continuous moving surface. Int. J. Heat Mass Transfer10, 219-235 (1967).
[3] Crane, L.: Flow past a stretching plate. Z. Angew. Math. Phys.21, 645-647 (1970).
[4] Kuiken, H. K.: On boundary-layers in fluid mechanics that decay algebraically along stretches of walls that are not vanishingly small. Inst. Math. Appl. J. Appl. Math.27, 387-405 (1981). · Zbl 0472.76045
[5] Caponi, E. A., Fornberg, B., Knight, D. D., McLean, J. W., Saffman, P. G., Yuen, H. C.: Calculations of laminar viscous flow over a moving wavy surface. J. Fluid Mech.124, 345-362 (1982). · Zbl 0521.76030
[6] Banks, W. H. H.: Similarity solutions of the boundary-layer equations for a stretching wall. J. M?c. Th?or. Appl.2, 375-392 (1983). · Zbl 0538.76039
[7] Banks, W. H. H., Zaturska, M. B.: Eigensolutions in boundary-layer flow adjacent to a stretching wall. Inst. Math. Appl. J. Appl. Math.36, 263-273 (1986). · Zbl 0619.76011
[8] Jeng, D. R., Cang, T. C., DeWitt, K. J.: Momentum and heat transfer on a continuous moving surface. J. Heat Transfer108, 532-539 (1986).
[9] Karwe, M. V., Jaluria, Y.: Thermal transport from a heated moving surface. J. Heat Transfer108, 728-733 (1986).
[10] B?hler, K., Zierep, J.: Instation?re Plattenstr?mung mit Absaugung und Ausblasen. ZAMM70, 589-590 (1990).
[11] Ingham, D. B., Pop, I.: Forced flow in a right-angled corner: higher-order theory. Eur. J. Mech., B/Fluids10, 313-331 (1991). · Zbl 0741.76014
[12] Takhar, H. S., Nitu, S., Pop, I.: Boundary layer flow due to a moving plate: variable fluid properties. Acta Mech.90, 37-42 (1991). · Zbl 0753.76149
[13] Pop, I., Watanabe, T.: The effects of suction or injection in boundary layer flow and heat transfer on a continuous moving surface. Techn. Mechanik13, 49-54 (1992).
[14] Andersson, H. I.: MHD flow of a viscoelastic fluid past a stretching surface. Acta Mech.95, 227-230 (1992). · Zbl 0753.76192
[15] Zierep, J., B?hler, K.: Beschleunigte/verz?gerte Platte mit homogenem Ausblasen/Absaugen. ZAMM73, T527-T529 (1993).
[16] Rees, D. A. S., Pop, I.: A note on free convection along a vertical sinusoidally wavy surface in a porous medium. J. Heat Transfer116, 505-507 (1994).
[17] Rees, D. A. S., Pop, I.: Free convection induced by a vertical wavy surface with uniform heat flux in a porous medium. J. Heat Transfer (to appear).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.