×

zbMATH — the first resource for mathematics

A parallel adaptive grid algorithm for computational shock hydrodynamics. (English) Zbl 0856.65108
The author presents an overview of a block-structured adaptive mesh refinement (AMR) algorithm: the grid structure, procedures to apply boundary conditions at the internal boundaries introduced by the method, description of the grid adaption process. Finally, an application is presented: the Mach reflection of a detonation wave from a ramp.
Reviewer: L.Vazquez (Madrid)

MSC:
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
65Y05 Parallel numerical computation
76L05 Shock waves and blast waves in fluid mechanics
35L67 Shocks and singularities for hyperbolic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akbar, R.; Quirk, J.J.; Shepherd, J.E., A numerical study of the Mach reflection of detonation waves, (), a follow-up manuscript is in preparation
[2] Arney, D.C.; Flaherty, J.E., An adaptive mesh moving and local refinement method for time-dependent partial differential equations, ACM trans. math. software, 16, 48-71, (1990) · Zbl 0900.65284
[3] Bell, J.B.; Colella, P.; Trangenstein, J.A.; Welcome, M., Adaptive methods for high Mach number reacting flow, AIAA paper 87-1168, (1987)
[4] Berger, M.J.; Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J. comput. phys., 82, 67-84, (1989) · Zbl 0665.76070
[5] Berger, M.J.; Oliger, J., Local adaptive mesh refinement for hyperbolic partial differential equations, J. comput. phys., 53, 482-512, (1984) · Zbl 0536.65071
[6] Berger, M.J.; Saltzman, J.S., AMR on the CM-2, Appl. numer. math., 14, 239-253, (1994) · Zbl 0803.76062
[7] Biswas, R.; Strawn, R., A new procedure for dynamic adaptation of three-dimensional unstructured grids, AIAA paper 93-0672, (1993)
[8] Bourlioux, A.; Majda, A.J., Theoretical and numerical structure for unstable two-dimensional detonations, Combustion and flame, 90, 211-229, (1992)
[9] Brackbill, J.U.; Saltzman, J.S., Adaptive zoning for singular problems in two dimensions, J. comput. phys., 46, 342-368, (1982) · Zbl 0489.76007
[10] Butler, R.; Lusk, E., User’s guide to the p4 parallel programming system, Argonne national laboratory report ANL-92/17, (1992)
[11] Chiang, Y.-L.; van Leer, B.; Powell, K.G., Simulation of unsteady inviscid flow on an adaptively refined Cartesian grid, AIAA paper 92-0443, (1992)
[12] Clarke, J.F.; Karni, S.; Quirk, J.J.; Roe, P.L.; Simmonds, L.G.; Toro, E.F., Numerical computation of two-dimensional unsteady detonation waves in high energy solids, J. comput. phys., 106, 215-233, (1993) · Zbl 0770.76040
[13] Crutchfield, W.Y., Load balancing irregular algorithms, (), Preprint
[14] Crutchfield, W.Y., Parallel adaptive mesh refinement: an example of data encapsulation, (), Preprint
[15] DeZeeuw, D.; Powell, K.G., An adaptively refined Cartesian mesh solver for the Euler equations, J. comput. phys., 104, 56-68, (1993) · Zbl 0766.76066
[16] Fickett, W.; Davis, W., Detonation, (1979), University of California Press Berkeley
[17] Fischer, J., Selbstadaptive, lokale netzverfeinerungen für die numerische simulation kompressibler, reibungsbehafteter strömungen, ()
[18] Graham, R.L., Bounds on certain multiprocessing anomalies, SIAM J. appl. math., 17, 416-429, (1969) · Zbl 0188.23101
[19] Kallinderis, Y.; Vidwans, A., Generic parallel adaptive-grid Navier-Stokes algorithm, Aiaa j., 32, 54-61, (1994) · Zbl 0792.76065
[20] Karni, S., Multi-component flow calculations by a consistent primitive algorithm, J. comput. phys., 112, 31-43, (1994) · Zbl 0811.76044
[21] Löhner, R., Some useful data-structures for the generation of unstructured grids, Comm. appl. numer. methods, 4, 123-135, (1988) · Zbl 0643.65075
[22] Löhner, R.; Baum, J.D., Adaptive h-refinement on 3D unstructured grids for transient problems, Internat. J. numer. methods fluids, 14, 1407-1419, (1992) · Zbl 0753.76099
[23] Meltzer, J.; Shepherd, J.E.; Akbar, R.; Sabet, A., Mach reflection of detonation waves, Progress in aeronautics and astronautics, 153, 78-94, (1993)
[24] Powell, K.G.; Roe, P.L.; Quirk, J.J., Adaptive-mesh algorithms for computational fluid dynamics, (), 303-337
[25] Quirk, J.J., An adaptive grid algorithm for computational shock hydrodynamics, () · Zbl 0856.65108
[26] Quirk, J.J., A contribution to the great Riemann solver debate, Internat. J. numer. methods fluids, 18, 555-574, (1994) · Zbl 0794.76061
[27] Quirk, J.J., An alternative to unstructured grids for computing gas dynamics flows around arbitrarily complex two-dimensional bodies, Comput. & fluids, 23, 125-142, (1994) · Zbl 0788.76067
[28] Quirk, J.J., Godunov-type schemes applied to detonation flows, (), 575-596
[29] Quirk, J.J., Numerical soot traces. “the Writing’s on the wall”, (), 331-337
[30] J.J. Quirk, Dynamic load balancing strategies for parallel adaptive mesh refinement, in preparation.
[31] J.J. Quirk and U.R. Hanebutte, A parallel adaptive mesh refinement algorithm, NASA CR-191530, ICASE Report No. 93-63, unpublished.
[32] J.J. Quirk and S. Karni, On the dynamics of a shock bubble interaction, NASA CR-194978, ICASE Report No. 94-75; also: J. Fluid Mech., to appear.
[33] Simon, H.D., Partitioning of unstructured problems for parallel processing, Comput. syst. engrg., 2, 135-148, (1991)
[34] Strehlow, R.A., The nature of transverse waves in detonations, Astronaut. acta, 14, 539-548, (1969)
[35] Thompson, J.F.; Weatherill, N.P., Aspects of numerical grid generation: current science and art, AIAA paper 93-3539, (1993)
[36] Webster, B.E.; Shephard, M.S.; Rusak, Z.; Flaherty, J.E., Automated adaptive time-discontinuous finite element method for unsteady compressible airfoil aerodynamics, Aiaa j., 32, 748-757, (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.