×

zbMATH — the first resource for mathematics

Adelic model of harmonic oscillator. (English) Zbl 0856.46048
Theor. Math. Phys. 101, No. 3, 1404-1412 (1994) and Teor. Mat. Fiz. 101, No. 3, 349-359 (1994).
Summary: Adelic quantum mechanics is formulated. The corresponding model of the harmonic oscillator is considered. The adelic harmonic oscillator exhibits many interesting features. One of them is a softening of the uncertainty relation.

MSC:
46N50 Applications of functional analysis in quantum physics
81P15 Quantum measurement theory, state operations, state preparations
46S10 Functional analysis over fields other than \(\mathbb{R}\) or \(\mathbb{C}\) or the quaternions; non-Archimedean functional analysis
81Q99 General mathematical topics and methods in quantum theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] I. V. Volovich,Class. Quantum Gravit.,4, 83 (1987). · doi:10.1088/0264-9381/4/4/003
[2] P. G. O. Freund and E. Witten,Phys. Lett.,B199, 191 (1987). · doi:10.1016/0370-2693(87)91357-8
[3] I. Ya. Aref’eva, B. G. Dragovi?, and I. V. Volovich,Phys. Lett.,B209, 445 (1988);B212, 283,B214, 339. · doi:10.1016/0370-2693(88)91171-9
[4] V. S. Vladimirov,Lett. Math. Phys.,27, 123 (1993). · Zbl 0779.11034 · doi:10.1007/BF00750680
[5] V. S. Vladimirov and I. V. Volovich,Dokl. Akad. Nauk SSSR,302, 320 (1988).
[6] C. Alacoque, P. Ruelle, E. Thiran, D. Verstegen, and J. Weyers,Phys. Lett.,B211, 59 (1988). · doi:10.1016/0370-2693(88)90807-6
[7] V. S. Vladimirov and I. V. Volovich,Commun. Math. Phys.,123, 659 (1989). · Zbl 0688.22004 · doi:10.1007/BF01218590
[8] V. S. Vladimirov and I. V. Volovich,Phys. Lett.,B217, 411 (1989). · doi:10.1016/0370-2693(89)90070-1
[9] Y. Meurice,Int. J. Mod. Phys.,A4, 5133 (1989). · Zbl 0715.22028 · doi:10.1142/S0217751X8900217X
[10] E. I. Zelenov,Teor. Mat. Fiz.,80, 253 (1989).
[11] V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov,Dokl. Akad. Nauk SSSR,310, 272 (1990);Izv. Akad. Nauk SSSR, Ser. Mat.,54, 275 (1990).
[12] E. I. Zelenov,Teor. Mat. Fiz.,86, 375 (1991).
[13] B. G. Dragovi?, P. H. Frampton, and B. V. Uro?evi?,Mod. Phys. Lett.,A5, 1521 (1990); I. Ya. Aref’eva, B. G. Dargovi?, P. H. Frampton, and I. V. Volovich,Int. J. Mod. Phys.,A6, 4341 (1991). · Zbl 1020.83500 · doi:10.1142/S0217732390001748
[14] V. S. Vladimirov,Usp. Mat. Nauk,43, 17 (1989).
[15] A. Yu. Khrennikov,Usp. Mat. Nauk,45, 79 (1990).
[16] B. G. Dragovi?,Teor. Mat. Fiz.,93, 211 (1992);J. Math. Phys.,34, 1143 (1993).
[17] B. D. B. Roth,Phys. Lett.,B213, 263 (1988); M. D. MissarovPhys. Lett.,B272, 36 (1991). · doi:10.1016/0370-2693(88)91758-3
[18] W. H. Schikhof,Ultrametric Calculus, Cambridge Univ. Press, Cambridge (1984). · Zbl 0553.26006
[19] I. M. Gel’fand, M. I. Graev, and I. I. Piatetskii-Shapiro,Representation Theory and Automorphic Functions [in Russian], Nauka, Moscow (1966).
[20] A. Yu. Khrennikov,J. Math. Phys.,32, 932 (1991). · Zbl 0746.46067 · doi:10.1063/1.529353
[21] V. S. Vladimirov and I. V. Volovich,Tr. Mat. Inst. Steklov,200, 88 (1990).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.