×

zbMATH — the first resource for mathematics

Møller’s energy-momentum complex – once again. (English) Zbl 0855.53059
Summary: The 35-year-old problem of Møller’s energy-momentum four-vector when transformed by a global Lorentz transformation is discussed again. It is argued that Møller’s result is adequate from the viewpoint of general relativity and hence does not defeat his energy-momentum complex.

MSC:
53Z05 Applications of differential geometry to physics
83C40 Gravitational energy and conservation laws; groups of motions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Møller, C. (1958).Ann. Phys. (NY) 4, 347. · Zbl 0081.22002
[2] Einstein, A. (1915).Sitzungsber. Preuss. Akad. Wiss. Berlin, Math.-Phys. Kl., 778.
[3] Landau, L. D., and Lifschitz, E. M. (1966).Klassische Feldtheorie (Akademie-Verlag, Berlin).
[4] Bergmann, P. G., and Thomson, R. (1953).Phys. Rev. 89, 400. · Zbl 0050.21506
[5] Goldberg, J. N. (1958).Phys. Rev. 111, 315. · Zbl 0089.20903
[6] Lessner, G. (1991).Gen. Rel. Grav. 23, 897. · Zbl 0728.53056
[7] Møller, C. (1961).Ann. Phys. (NY) 12, 118. · Zbl 0096.22003
[8] Kovacs, D. (1985).Gen. Rel. Grav. 17, 927.
[9] Novotny, J. (1987).Gen. Rel. Grav. 19, 1043.
[10] Hehl, F. W., Lemke, J. and Mielke, E. (1991). InGeometrical Methods and Theoretical Physics, J. Debrus, A. C. Hirshfeld, eds. (Springer-Verlag, Berlin). · Zbl 0757.53043
[11] Schmutzer, E. (1968).Relativistische Physik (Teubner Verlagsgesellschaft, Leipzig) · Zbl 0193.57301
[12] Lessner, G. (1986).Gen. Rel. Grav. 18, 899.
[13] Arnowitt, R., Deser, S., and Misner, C. (1962). InGravitation: An Introduction to Current Research, L. Witten, ed. (Wiley, New York).
[14] De Witt, B. S. (1967).Phys. Rev. 160, 1113. · Zbl 0158.46504
[15] Regge, T., and Teitelboim, C. (1974).Ann. Phys. (NY) 88, 286 · Zbl 0328.70016
[16] Schoen, R., and Yau, S.-T. (1979).Commun. Math. Phys. 65, 45. · Zbl 0405.53045
[17] Witten, E. (1981).Commun. Math. Phys. 80, 381. · Zbl 1051.83532
[18] Lessner, G. (1990).Gen. Rel. Grav. 22, 913.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.