×

zbMATH — the first resource for mathematics

Analysis and convergence of a covolume method for the generalized Stokes problem. (English) Zbl 0854.65091
Summary: We introduce a covolume or MAC-like method for approximating the generalized Stokes problem. Two grids are needed in the discretization; a triangular one for the continuity equation and a quadrilateral one for the momentum equation. The velocity is approximated using nonconforming piecewise linears and the pressure piecewise constants. Error in the \(L^2\) norm for the pressure and error in a mesh dependent \(H^1\) norm as well as in the \(L^2\) norm for the velocity are shown to be of first order, provided that the exact velocity is in \(H^2\) and the true pressure in \(H^1\). We also introduce the concept of a network model into the discretized linear system so that an efficient pressure-recovering technique can be used to simplify a great deal the computational work involved in the augmented Lagrangian method. Given is a very general decomposition condition under which this technique is applicable to other fluid problems that can be formulated as a saddle-point problem.

MSC:
65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76D07 Stokes and related (Oseen, etc.) flows
35B45 A priori estimates in context of PDEs
35J50 Variational methods for elliptic systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. Amit, C. A. Hall, and T. A. Porsching, An application of network theory to the solution of implicit Navier-Stokes difference equations, J. Comput. Phys. 40 (1981), no. 1, 183 – 201. · Zbl 0452.76024 · doi:10.1016/0021-9991(81)90206-0 · doi.org
[2] Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. · Zbl 0788.73002
[3] Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. · Zbl 0804.65101
[4] S. H. Chou, A network model for incompressible two-fluid flow and its numerical solution, Numer. Methods Partial Differential Equations 5 (1989), no. 1, 1 – 24. · Zbl 0669.76130 · doi:10.1002/num.1690050102 · doi.org
[5] -, A network model for two-fluid flow, Proceedings of the 5th International Conference on Reactor Thermal Hydraulics, American Nuclear Society, Vol. VI, Salt Lake City, Utah, 1992, pp. 1607-1614. · Zbl 0825.94013
[6] S. Choudhury and R. A. Nicolaides, Discretization of incompressible vorticity-velocity equations on triangular meshes, Internat. J. Numer. Methods Fluid Dynamics 11 (1990). · Zbl 0704.76016
[7] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), no. R-3, 33 – 75. · Zbl 0302.65087
[8] Michel Fortin and Roland Glowinski, Augmented Lagrangian methods, Studies in Mathematics and its Applications, vol. 15, North-Holland Publishing Co., Amsterdam, 1983. Applications to the numerical solution of boundary value problems; Translated from the French by B. Hunt and D. C. Spicer. · Zbl 0525.65045
[9] Lucia Gastaldi and Ricardo Nochetto, Optimal \?^\infty -error estimates for nonconforming and mixed finite element methods of lowest order, Numer. Math. 50 (1987), no. 5, 587 – 611. · Zbl 0597.65080 · doi:10.1007/BF01408578 · doi.org
[10] Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. · Zbl 0585.65077
[11] Roland Glowinski and Patrick Le Tallec, Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM Studies in Applied Mathematics, vol. 9, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989. · Zbl 0698.73001
[12] C. A. Hall, J. C. Cavendish, and W. H. Frey, The dual variable method for solving fluid flow difference equations on Delaunay triangulations, Comput. & Fluids 20 (1991), no. 2, 145 – 164. · Zbl 0729.76047 · doi:10.1016/0045-7930(91)90017-C · doi.org
[13] C. A. Hall, T. A. Porsching and G. L. Mesina, On a network method for unsteady incompressible fluid flow on triangular grids, Internat. J. Numer. Methods Fluids 15 (1992), 1383-1406. · Zbl 0825.76445
[14] F. H. Harlow and F. E. Welch, Numerical calculations of time dependent viscous incompressible flow of fluid with a free surface, Phys. Fluids 8 (1965), 2181. · Zbl 1180.76043
[15] R. A. Nicolaides, Direct discretization of planar div-curl problems, SIAM J. Numer. Anal. 29 (1992), no. 1, 32 – 56. · Zbl 0745.65063 · doi:10.1137/0729003 · doi.org
[16] R. A. Nicolaides, Analysis and convergence of the MAC scheme. I. The linear problem, SIAM J. Numer. Anal. 29 (1992), no. 6, 1579 – 1591. · Zbl 0764.76051 · doi:10.1137/0729091 · doi.org
[17] R. A. Nicolaides, T. A. Porsching and C. A. Hall, Covolume methods in computational fluid dynamics, Computational Fluid Dynamics Review , Wiley, New York, 1995, pp. 279-299. · Zbl 0875.76410
[18] T. A. Porsching, Error estimates for MAC-like approximations to the linear Navier-Stokes equations, Numer. Math. 29 (1977/78), no. 3, 291 – 306. · Zbl 0352.65057 · doi:10.1007/BF01389214 · doi.org
[19] -, A network model for two-fluid flow, Numer. Methods Partial Differential Equations 1 (1985), 295-313. · Zbl 0637.76112
[20] Gilbert Strang, Introduction to applied mathematics, Wellesley-Cambridge Press, Wellesley, MA, 1986. · Zbl 0618.00015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.