×

zbMATH — the first resource for mathematics

On a new pseudocompressibility method for the incompressible Navier-Stokes equations. (English) Zbl 0853.76052
Summary: We propose and analyze a new pseudocompressibility method which is obtained by introducing a pressure stabilizing/regularizing term in the equation of mass conservation. The perturbed system can be viewed as an approximation to the incompressible Navier-Stokes equations, and its discretization can lead to efficient and accurate numerical schemes for the Navier-Stokes equations. An error analysis of related artificial compressibility method for the Navier-Stokes equations is also carried out.

MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agmon, S., Lectures on elliptic boundary value problems, (1965), Elsevier New York · Zbl 0151.20203
[2] Brezzi, F.; Douglas, J., Stabilized mixed methods for the Stokes problem, Numer. math., 53, 225-235, (1988) · Zbl 0669.76052
[3] Brezzi, F.; Fortin, M., Mixed and hybrid finite element methods, (1991), Springer New York · Zbl 0788.73002
[4] Brezzi, F.; Pitkaranta, J., On the stabilization of finite element approximation of the Stokes problem, (), 11-19 · Zbl 0552.76002
[5] Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A., Spectral methods on fluid dynamics, (1987), Springer Berlin · Zbl 0636.76009
[6] Chorin, A.J., Numerical solution of the Navier-Stokes equations, Math. comp., 22, 745-762, (1968) · Zbl 0198.50103
[7] Chorin, A.J., On the convergence of discrete approximations to the Navier-Stokes equations, Math. comp., 23, 341-353, (1969) · Zbl 0184.20103
[8] Liu, W.E; Liu, J.G., Projection method I: convergence and numerical boundary layers, SIAM J. numer. anal., 32, 1017-1057, (1995) · Zbl 0842.76052
[9] Girault, V.; Raviart, P.A., Finite element methods for Navier-Stokes equations, (1986), Springer Berlin · Zbl 0396.65070
[10] Heywood, J.G.; Rannacher, R., Finite element approximation of the nonstationary Navier-Stokes problem. I. regularity of solutions and second-order error estimates for spatial discretization, SIAM J. numer. anal., 19, 275-311, (1982) · Zbl 0487.76035
[11] Hughes, T.J.R.; Franca, L.P.; Balestra, M., A new finite element formulation for computational fluid mechanics: V. circumventing the babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal order interpolation, Comput. methods appl. mech. engrg., 59, 85-99, (1986) · Zbl 0622.76077
[12] Hughes, T.J.R.; Liu, W.T.; Brooks, A.J., Finite element analysis of incompressible viscous flows by the penalty function formulation, J. comput. phys., 30, 1-60, (1979) · Zbl 0412.76023
[13] Kim, J.; Moin, P., Application of a fractional-step method to incompressible Navier-Stokes equations, J. comput. phys., 59, 308-323, (1985) · Zbl 0582.76038
[14] Klainerman, S.; Majda, A., Compressible and incompressible fluids, Comm. pure appl. math., 35, 629-651, (1982) · Zbl 0478.76091
[15] Kreiss, H.O.; Lorenz, J.; Naughton, J.M., Convergence of the solutions of the compressible to the solution of the incompressible Navier-Stokes equations, Adv. in appl. math., (1991) · Zbl 0728.76084
[16] Lions, J.L., Quelques Méthodes de Résolution des problèmes aux limites nonlinéaires, (1969), Dunod Paris · Zbl 0189.40603
[17] Morgan, J.; Scott, R., A nodal basis for C1 piecewise polynomials of degree n ≥ 5, Math. comp., 29, 736-740, (1975) · Zbl 0307.65074
[18] Rannacher, R., On Chorin’s projection method for the incompressible Navier-Stokes equations, (), 167-183 · Zbl 0769.76053
[19] Scott, R.; Vogelius, M., Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, Math. model. numer. anal., 19, 111-143, (1985) · Zbl 0608.65013
[20] Shen, J., On error estimates of the projection methods for the Navier-Stokes equations: first-order schemes, SIAM J. numer. anal., 29, 57-77, (1992) · Zbl 0741.76051
[21] Shen, J., On pressure stabilization method and projection method for unsteady Navier-Stokes equations, (), 658-662
[22] Shen, J., On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations, Numer. math., 62, 49-73, (1992) · Zbl 0739.76017
[23] Shen, J., A remark on the projection-3 method, Internat. J. numer. methods fluids, 16, 249-253, (1993) · Zbl 0768.76039
[24] Shen, J., On error estimates of the penalty method for the unsteady Navier-Stokes equations, SIAM J. numer. anal., 32, 2, (1995) · Zbl 0822.35008
[25] Shen, J., On error estimates of the projection method for the Navier-Stokes equations: second order schemes, Math. comp., 65, (1996)
[26] Temam, R., Une méthode d’approximation des solutions des équations de Navier-Stokes, Bull. soc. math. France, 98, 115-152, (1968) · Zbl 0181.18903
[27] Temam, R., Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires II, Arch. rational mech. anal., 33, 377-385, (1969) · Zbl 0207.16904
[28] Temam, R., Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires I, Arch. rational mech. anal., 32, 135-153, (1969) · Zbl 0195.46001
[29] Temam, R., Navier-Stokes equations and nonlinear functional analysis, () · Zbl 0833.35110
[30] Temam, R., Navier-Stokes equations: theory and numerical analysis, (1984), North-Holland Amsterdam · Zbl 0568.35002
[31] van Kan, J., A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM J. sci. statist. comput., 7, 870-891, (1986) · Zbl 0594.76023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.