zbMATH — the first resource for mathematics

The order of convergence of eigenfrequencies in finite element approximations of fluid-structure interaction problems. (English) Zbl 0853.65111
Summary: We prove a double order for the convergence of eigenfrequencies in fluid-structure vibration problems. We improve estimates given recently for compressible and incompressible fluids. To do this, we extend classical results on finite element spectral approximation to nonconforming methods for noncompact operators.

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
70J30 Free motions in linear vibration theory
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76Q05 Hydro- and aero-acoustics
Full Text: DOI
[1] I. Babuška and J. Osborn, Eigenvalue problems, in Handbook of Numerical Analysis, Vol. II (ed. P. G. Ciarlet and J. L. Lions) North Holland, Amsterdam, 1991. CMP 91:14 · Zbl 0875.65087
[2] A. Bermúdez, R. Durán, M.A. Muschietti, R. Rodríguez and J. Solomin, Finite element vibration analysis of fluid-solid systems without spurious modes, SIAM J. Numer. Anal., 32 (1995), 1280–1295. CMP 95:15 · Zbl 0833.73050
[3] A. Bermúdez, R. Durán and R. Rodríguez, Finite element analysis of compressible and incompressible fluid-solid systems, Math. Comp. (submitted) · Zbl 0898.73060
[4] A. Bermúdez, R. Durán and R. Rodríguez, Finite element solution of incompressible fluid-structure vibration problems, Internat. J. Numer. Methods Engrg. (submitted) · Zbl 0833.73050
[5] Alfredo Bermúdez and Rodolfo Rodríguez, Finite element computation of the vibration modes of a fluid-solid system, Comput. Methods Appl. Mech. Engrg. 119 (1994), no. 3-4, 355 – 370. · Zbl 0851.73053 · doi:10.1016/0045-7825(94)90095-7 · doi.org
[6] Jacqueline Boujot, Mathematical formulation of fluid-structure interaction problems, RAIRO Modél. Math. Anal. Numér. 21 (1987), no. 2, 239 – 260 (English, with French summary). · Zbl 0617.73052
[7] Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. · Zbl 0788.73002
[8] H. C. Chen and R. L. Taylor, Vibration analysis of fluid-solid systems using a finite element displacement formulation, Internat. J. Numer. Meth. Eng., 29 (1990) 683-698. · Zbl 0724.73173
[9] Jean Descloux, Nabil Nassif, and Jacques Rappaz, On spectral approximation. I. The problem of convergence, RAIRO Anal. Numér. 12 (1978), no. 2, 97 – 112, iii (English, with French summary). Jean Descloux, Nabil Nassif, and Jacques Rappaz, On spectral approximation. II. Error estimates for the Galerkin method, RAIRO Anal. Numér. 12 (1978), no. 2, 113 – 119, iii (English, with French summary). · Zbl 0393.65024
[10] J. Descloux, N. Nassif and J. Rappaz, On spectral approximation. Part 2: Error estimates for the Galerkin methods, R.A.I.R.O. Anal. Numér., 12 (1978) 113-119. · Zbl 0393.65025
[11] M. Hamdi, Y. Ouset and G. Verchery, A displacement method for the analysis of vibrations of coupled fluid-structure systems, Internat. J. Numer. Methods Eng., 13 (1978) 139-150. · Zbl 0384.76060
[12] Henri J.-P. Morand and Roger Ohayon, Interactions fluides-structures, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 23, Masson, Paris, 1992 (French). · Zbl 0754.73071
[13] B. Mercier, J. Osborn, J. Rappaz, and P.-A. Raviart, Eigenvalue approximation by mixed and hybrid methods, Math. Comp. 36 (1981), no. 154, 427 – 453. · Zbl 0472.65080
[14] L. Olson and K. Bathe, Analysis of fluid-structure interactions. A direct symmetric coupled formulation based on the fluid velocity potential, Comp. Struct., 21 (1985) 21-32. · Zbl 0568.73088
[15] P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Springer, Berlin, 1977, pp. 292 – 315. Lecture Notes in Math., Vol. 606.
[16] J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965. · Zbl 0258.65037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.