Deaconescu, Marian; Khazal, Reyadh R. A characterization of the finite cyclic groups. (English) Zbl 0853.20012 An. Univ. Timiş., Ser. Mat.-Inform. 32, No. 1, 37-40 (1994). Summary: We prove that a finite group \(G\) is cyclic iff \(G=\langle H,\widetilde H_G\rangle\) for every \(H\leq G\), where \(\widetilde H_G\) is the intersection of those maximal subgroups of \(G\) which do not contain \(H\). Cited in 1 Document MSC: 20D30 Series and lattices of subgroups 20E28 Maximal subgroups 20D25 Special subgroups (Frattini, Fitting, etc.) 20F05 Generators, relations, and presentations of groups 20E34 General structure theorems for groups Keywords:finite cyclic groups; intersection of maximal subgroups PDF BibTeX XML Cite \textit{M. Deaconescu} and \textit{R. R. Khazal}, An. Univ. Timiş., Ser. Mat.-Inform. 32, No. 1, 37--40 (1994; Zbl 0853.20012)