×

A regularized dual mixed element for plane elasticity. Implementation and performance of the BDM element. (English) Zbl 0852.73065

We consider aspects of the formulation and numerical implementation of the BDM element. This element is based on an extended dual Hellinger-Reissner principle which leads to optimal convergence rates for the stresses and displacements. The element is characterized by a non-symmetric approximation of the stress field, which implies an approximation of the work-conjugate rotation field, by adding the couple equilibrium with a Lagrangian multiplier. We discuss in detail algorithmic aspects of the implementation and give comparisons with respect to the approximation behaviour of the Q1, Pian-Sumihara and the recently developed Q1/E5 element.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74B99 Elastic materials
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Brezzi, F.; Douglas, J.; Marini, L.D., Two families of mixed finite elements for second order elliptic problems, Numer. math., 47, 217-235, (1985) · Zbl 0599.65072
[2] Stenberg, R., A family of mixed finite elements for the elasticity problem, Numer. math., 53, 513-538, (1988) · Zbl 0632.73063
[3] de Veubeke, D.Fraeijs, Stress function approach, ()
[4] Stein, E.; Rolfes, R., Mechanical conditions for stability and optimal convergence for mixed finite elements of linear plane elasticity, Comput. methods appl. mech. engrg., 84, 77-95, (1990) · Zbl 0729.73208
[5] Wilson, E.L.; Taylor, R.L.; Doherty, W.P.; Ghabaussi, J., Incompatible displacement models, (), 43-57
[6] Taylor, R.L.; Beresford, P.J.; Wilson, E.L., A non-conforming element for stress analysis, Internat. J. numer. methods engrg., 10, 1211-1219, (1976) · Zbl 0338.73041
[7] Pian, T.H.H.; Chen, D.P., Alternative ways for formulation of hybrid stress elements, Internat. J. numer. methods engrg., 18, 1679-1684, (1982) · Zbl 0497.73080
[8] Olsen, M.D., The mixed finite element method in elasticity and elastic contact problems, (), 19-49
[9] Pian, T.H.H.; Sumihara, K., Rational approach for assumed stress finite elements, Internat. J. numer. methods engrg., 20, 1685-1695, (1984) · Zbl 0544.73095
[10] Simo, J.C.; Rifai, M.S., A class of mixed assumed strain methods and the method of incompatible modes, Internat. J. numer. methods engrg., 29, 1595-1638, (1990) · Zbl 0724.73222
[11] Raviart, P.A.; Thomas, J.M., A mixed finite element method for 2nd order elliptic problems, (), 606 · Zbl 0362.65089
[12] Arnold, D.N.; Brezzi, F.; Douglas, J., PEERS: A new mixed finite element for plane elasticity, Japan J. appl. math., 1, 347-367, (1984) · Zbl 0633.73074
[13] Rolfes, R., Zur stabilität und konvergenz gemischter finiter elemente in der linearen elastizitätstheorie, ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.