zbMATH — the first resource for mathematics

Long-time behaviour for a model of phase-field type. (English) Zbl 0851.35055
The long-time behaviour of a model of phase-field type is investigated in this paper. This model consists of a coupled system of two parabolic equations: \[ \varphi_t- k_1 \Delta\varphi= - s'(\varphi)+ w'(\varphi) u,\quad u_t- k_2 \Delta u= - w'(\varphi) \varphi_t\quad \text{in } Q,\tag{1} \] \[ {\partial\varphi\over \partial n}= 0,\quad {\partial u\over \partial n}= 0\quad \text{on }\Sigma,\quad\varphi(\cdot, 0)= \varphi_0,\quad u(\cdot, 0)= u_0\quad \text{in } \Omega, \] where \(\Omega\) is a bounded open subset of \(\mathbb{R}^N\), \(1\leq N\leq 3\), with smooth boundary \(\Gamma\), \(Q= \Omega\times (0, +\infty)\), \(\Sigma= \Gamma\times (0, +\infty)\), \(k_1\), \(k_2\) are positive real numbers and functions \(w, s\in C^\infty(\mathbb{R})\) satisfy suitable conditions. It describes the time evolution of a binary system which occupies a region \(\Omega\) and whose state may be described by an order parameter \(\varphi\) and by the temperature \(u\).
The author reformulates the problem (1) using the order parameter \(\varphi\) and the energy density \(e= u+ w(\varphi)\), it gives: \[ \varphi_t- k_1 \Delta\varphi= - s'(\varphi)- w'(\varphi) w(\varphi)+ w'(\varphi) e, e_t- k_2 \Delta e= - k_2 \text{ div}(w'(\varphi) \nabla \varphi)\text{ in } Q,\tag{2} \] \[ {\partial \varphi\over \partial n}= 0,\quad {\partial e\over \partial n}= 0\quad \text{on }\Sigma,\quad \varphi(\cdot, 0)= \varphi_0,\quad e(\cdot, 0)= u_0+ w(\varphi_0)= e_0\quad \text{in }\Omega. \] There are introduced the following function spaces \[ X_\beta= \Biggl\{ (\varphi, e)\in W^{1, 4} (\Omega, \mathbb{R}^2): \int_\Omega e(x) dx= |\Omega|\beta\Biggr\},\quad Y_\alpha= \bigcup_{|\beta|\leq \alpha} X_\beta, \] for any real number \(\beta\) and for any nonnegative real number \(\alpha\).
Using abstract results of Amann, the well-posedness of (2) for initial data \((\varphi_0, e_0)\) in \(W^{1,4}(\Omega, \mathbb{R}^2\)) is proved. Moreover, there is proved that \(\{S_t\} (S_t(\varphi_0, e_0)= (\varphi(t), e(t)))\) is a strongly continuous semigroup in \(W^{1, 4}(\Omega, \mathbb{R}^2)\) and maps \(X_\beta\) in itself for each real number \(\beta\). Finally, there is proved that the semigroup \(\{S_t\}\) has a maximal attractor in \(Y_\alpha\) for any nonnegative real number \(\alpha\) and an exponential attractor in \(L^2(\Omega)\times H^1(\Omega)'\).

35K45 Initial value problems for second-order parabolic systems
35B40 Asymptotic behavior of solutions to PDEs
35K55 Nonlinear parabolic equations
Full Text: DOI
[1] DOI: 10.1007/BF01049391 · Zbl 0758.35040 · doi:10.1007/BF01049391
[2] Amann, Function Spaces, Differential Operators and Nonlinear Analysis 133 pp 9– (1993) · doi:10.1007/978-3-663-11336-2_1
[3] Amann, Differential Integral Equations 3 pp 13– (1990)
[4] Adams, Sobolev Spaces (1975)
[5] Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics 68 (1988) · Zbl 0662.35001 · doi:10.1007/978-1-4684-0313-8
[6] Haraux, Systemes Dynamiques Dissipatifs et Applications (1990)
[7] DOI: 10.1016/0167-2789(90)90015-H · Zbl 0709.76001 · doi:10.1016/0167-2789(90)90015-H
[8] Eden, IMA Preprint Series 812 (1991)
[9] Elliott, Free Boundary Value Problems 95 pp 46– (1990) · doi:10.1007/978-3-0348-7301-7_4
[10] Eden, C. R. Acad. Sci. Paris I 310 pp 559– (1990)
[11] DOI: 10.1007/BF00254827 · Zbl 0608.35080 · doi:10.1007/BF00254827
[12] DOI: 10.1016/0893-9659(91)90076-8 · Zbl 0773.35028 · doi:10.1016/0893-9659(91)90076-8
[13] DOI: 10.1080/00036819108840173 · Zbl 0790.35052 · doi:10.1080/00036819108840173
[14] DOI: 10.1103/PhysRevB.10.139 · doi:10.1103/PhysRevB.10.139
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.