On the modified Enskog equation for elastic and inelastic collisions. Models with spin. (English) Zbl 0850.70141

Summary: Under appropriate assumptions on the collision kernel we prove the existence of global solutions of the Enskog equation with elastic or inelastic collisions. We consider also this equation with spin, that is, the case when the angular velocities of the colliding particles are taken into account. In this case we also prove global existence results.


82C40 Kinetic theory of gases in time-dependent statistical mechanics
35Q82 PDEs in connection with statistical mechanics
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
Full Text: DOI Numdam EuDML


[1] Araki, S.; Tremaine, S., The dynamics of dense particle disks, Icarus, Vol. 65, 83-109, (1986)
[2] Arkeryd, L., Loeb solutions of the Boltzmann equation, Arch. Rat. Mech. Anal., Vol. 86, 85-97, (1984) · Zbl 0598.76091
[3] L. Arkeryd, On the Enskog Equation with Large Initial Data, S.I.A.M. J. Math. Anal. · Zbl 0703.76061
[4] Arkeryd, L.; Cercignani, C., On the convergence of solutions of the Enskog equation to solutions of the Boltzmann equation, Comm. in P.D.E., Vol. 14, 1071-1091, (1989) · Zbl 0688.76053
[5] L. Arkeryd and C. Cercignani, Global Existence in L^{1} for the Enskog Equation and Convergence of the Solutions to Solutions of the Boltzmann Equation, Preprint. · Zbl 0780.76066
[6] Bellomo, N.; Lachowicz, M., On the asymptotic equivalence between the Enskog and the Boltzmann equations, J. Stat. Phys., Vol. 51, 233-247, (1988) · Zbl 1086.82539
[7] N. Bellomo and M. Lachowicz, Some Mathematical Results on the Asymptotic behavior of the Solutions to the Initial Value Problem for the Enskog Equation, Rapp. int. No. 4, 1989, Dipt. Mat. Politechnico Torino. · Zbl 0707.76074
[8] N. Bellomo and M. Lachowicz, On the Asymptotic Theory of the Boltzmann and the Enskog Equations. A Rigorous H-Theorem for the Enskog Equation, Rapp. int., No. 6, 1989, Dipt. Mat. Politechnico Torino. · Zbl 0850.76608
[9] Cercignani, C., Small data existence for the Enskog equation in L^{1}, J. Stat Phys., Vol. 51, 291-297, (1988) · Zbl 1086.82540
[10] Cercignani, C., Existence of global solutions for the space inhomogeneous Enskog equation, Transport theory and Stat. Phys., Vol. 16, 213-221, (1987) · Zbl 0629.76083
[11] Cercignani, C., Meccanica dei materiali granulari e teoria cinetica dei gas: una notevole analogia, Atti. Sem. Mat. Fis. Univ. Modena, Vol. XXXVI, (1988)
[12] Cercignani, C., The Boltzmann equation and its applications, (1988), Springer Berlin · Zbl 0646.76001
[13] Diperna, R. J.; Lions, P.-L., On the Cauchy problem for Boltzmann equations: global existence and weak stability, Annals of Math., Vol. 130, 321-366, (1989) · Zbl 0698.45010
[14] Diperna, R. J.; Lions, P.-L., Solutions globales d’équations du type Vlasov-Poisson, C. R. Acad. Sci. Paris, T. 307, Série I, 655-658, (1988) · Zbl 0682.35022
[15] Diperna, R. J.; Lions, P.-L., Global existence for the Fokker-Planck-Boltzmann equations, Comm. Pure Appl. Math., Vol. ΧΙ.II, No. 6, 729-758, (1989) · Zbl 0698.35128
[16] Esteban, M. J.; Perthame, B., Solutions globales de l’équation d’enskog modifiée avec collisions élastiques ou inélastiques, C. R. Acad. Sci. Paris, T. 309, Séries I, (1989) · Zbl 0706.35133
[17] Golse, F.; Lions, P.-L.; Perthame, B.; Sentis, R., Regularity of the moments of the solution of a transport equation, J. Funct. Anal., Vol. 76, 1, 110-125, (1988) · Zbl 0652.47031
[18] Golse, F.; Perthame, B.; Sentis, R., Un résultat de régularité pour LES equations du transport et application au calcul de la limite de la valeur propre principale d’un opérateur du transport, C. R. Acad. Sci. Paris, T. 301, séries I, 341-344, (1985) · Zbl 0591.45007
[19] Goldreich, P.; Tremaine, S., The velocity dispersion in saturn’s rings, Icarus, Vol. 34, 227-239, (1978)
[20] Hornung, P.; Pellat, R.; Barge, P., Thermal velocity equilibrium in the protoplanetary cloud, Icarus, Vol. 63, (1985)
[21] Landau, E. M.; Pitaevski, L. P., Physical kinetics, (1981), Pergamon Press Oxford
[22] Polewczak, J., Global existence in L^{1} for the modified nonlinear Enskog equation in \(\mathbb{R}^3\), J. Stat. Phys., Vol. 56, 159-173, (1989) · Zbl 0719.35071
[23] Polewczak, J., Global existence in L^{1} for the generalized Enskog equation, J. Stat. Phys., Vol. 59, (1990), (to appear) · Zbl 1083.82531
[24] Resibois, P., H-theorem for the (modified) nonlinear Enskog equation, J. Stat. Phys., Vol. 19, 593-609, (1978)
[25] Toscani, G.; Bellomo, N., The Enskog-Boltzmann equation in the whole space \(\mathbb{R}^3\): some global existence, uniqueness and stability results, Comm. Math. Phys., Vol. 13, 851-859, (1987) · Zbl 0633.35072
[26] Truesdell, C.; Muncaster, R. C., Fundamentals of maxwell’s kinetic theory of a simple monoatomic gas, (1980), Academic Press New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.