# zbMATH — the first resource for mathematics

A shear deformable plate element with an exact thin limit. (English) Zbl 0849.73063
Summary: We present a quadrilateral finite element developed within the framework of a shear deformable plate theory. The interpolation for the rotation takes advantage of internal rotational degrees of freedom (through the use of bubble functions), while the interpolation for the transverse displacement is linked to the nodal rotations. A careful study of the element behavior is performed using an extensive set of mixed patch tests, results from several numerical examples are also presented. The element has proper rank and excellent interpolating capacity. Moreover, without using any ad-hoc assumption (e.g., energy balancing schemes) the element presents no locking effects at all; in fact, the shear energy may be set identically equal to zero without introducing any ill-conditioning in the problem, thus recovering a proper thin plate limit.

##### MSC:
 74S05 Finite element methods applied to problems in solid mechanics 74K20 Plates
Full Text:
##### References:
 [1] de Veubeke, B.Fraeijs, Displacement and equilibrium models in the finite element method, () · Zbl 0245.73031 [2] Zienkiewicz, O.C.; Xu, Z.; Zeng, L.F.; Samuelsson, A.; Wiberg, N.E., Linked interpolation for Reissner-Mindlin plate elements: part I. A simple quadrilateral, Internat. J. numer. methods engrg., 36, 3043-3056, (1993) · Zbl 0780.73090 [3] Crisfield, M.A., Finite elements and solution procedures for structural analysis, () · Zbl 0605.73062 [4] Taylor, R.L., Finite element analysis of linear shell problems, () · Zbl 0682.73048 [5] Tessler, A.; Dong, S.B., On a hierarchy of conforming Timoshenko beam elements, Comput. & struct., 14, 335-344, (1981) [6] Auricchio, F.; Taylor, R.L., A new family of quadrilateral thick plate finite elements based on linked interpolation, () · Zbl 0875.73290 [7] Greimann, L.F.; Lynn, P.P., Finite element analysis of plate bending with transverse shear deformation, Nucl. engrg. des., 14, 223-230, (1970) [8] Lynn, P.P.; Dhillon, B.S., Triangular thick plate bending elements, (), M 6/5 [9] Tessler, A.; Hughes, T.J.R., An improved treatment of transverse shear in the Mindlin-type four node quadrilateral element, Comput. methods appl. mech. engrg., 39, 311-335, (1983) · Zbl 0501.73072 [10] Crisfield, M.A., A four noded thin plate bending element using shear constraints—A modified version of lyons’ element, Comput. methods appl. mech. engrg., 38, 93-120, (1983) · Zbl 0515.73069 [11] Crisfield, M.A., A quadratic Mindlin element using shear constraints, Comput. & stuct., 18, 833-852, (1984) · Zbl 0533.73073 [12] Crisfield, M.A., Shear constraints and folded-plated structures, Engrg. computations, 2, 238-246, (1985) [13] Xu, Z., A simple and efficient triangular finite element for plate bending, Acta mech. sin., 2, 185-192, (1986) · Zbl 0605.73075 [14] Xu, Z., A thick-thin triangular plate element, Internat. J. numer. methods engrg., 33, 963-973, (1992) [15] Papadopoulos, P.; Taylor, R.L., A triangular element based on Reissner-Mindlin plate theory, Internat. J. numer. methods engrg., 30, 1029-1049, (1990) · Zbl 0728.73073 [16] Baiocchi, C.; Brezzi, F.; Franca, L.P., Virtual bubbles and Galerkin-least-squares type methods (ga.L.S.), Comput. methods appl. mech. engrg., 105, 125-141, (1993) · Zbl 0772.76033 [17] Brezzi, F.; Bristeau, M.O.; Franca, L.P.; Mallet, M.; Rogé, G., A relationship between stabilized finite element methods and the Galerkin method with bubble functions, Comput. methods appl. mech. engrg., 96, 117-129, (1992) · Zbl 0756.76044 [18] Brezzi, F.; Fortin, M., Mixed and hybrid finite element methods, () · Zbl 1009.65067 [19] Auricchio, F.; Taylor, R.L., 3-node triangular elements based on Reissner-Mindlin plate theory, () · Zbl 0875.73290 [20] Taylor, R.L.; Auricchio, F., Linked interpolation for Reissner-Mindlin plate elements: part II. A simple triangle, Internat. J. numer. methods engrg., 36, 3057-3066, (1993) · Zbl 0781.73071 [21] Xu, Z.; Zienkiewicz, O.C.; Zeng, L.F., Linked interpolation for Reissner-Mindlin plate elements: part III. an alternative quadrilateral, Internat. J. numer. methods engrg., 37, 1437-1443, (1994) · Zbl 0805.73068 [22] Fried, I., Shear in C^{0} and C1 bending finite elements, Internat. J. solids struct., 9, 449-460, (1973) [23] Fried, I., Finite element analysis of incompressible material by residual energy balancing, Internat. J. solids struct., 10, 993-1002, (1974) · Zbl 0281.73045 [24] Mindlin, R.D., Influence of rotatory inertia and shear in flexural motion of isotropic, elastic plates, J. appl. mech., 18, 31-38, (1951) · Zbl 0044.40101 [25] Reissner, E., The effect of transverse shear deformation on the bending of elastic plates, J. appl. mech., 12, 69-76, (1945) [26] Zienkiewicz, O.C.; Taylor, R.L., () [27] Green, A.E.; Naghdi, P.M., On the derivation of shell theories by a direct approach, J. appl. mech., 41, 173-176, (1974) · Zbl 0317.73057 [28] Naghdi, P.M., Finite deformation of elastic rods and shells, (), 47-103 · Zbl 0523.73033 [29] Simo, J.C.; Fox, D.D., On a stress resultant geometrically exact shell model. part I: formulation and optimal parametrization, Comput. methods appl. mech. engrg., 72, 267-304, (1988) · Zbl 0692.73062 [30] Simo, J.C.; Fox, D.D.; Rifai, M.S., On a stress resultant geometrically exact shell model. part II: the linear theory, computational aspects, Comput. methods appl. mech. engrg., 73, 53-92, (1989) · Zbl 0724.73138 [31] Zienkiewicz, O.C.; Lefebvre, D., A robust triangular plate bending element of Reissner-Mindlin type, Internat. J. numer. methods engrg., 26, 1169-1184, (1988) · Zbl 0634.73064 [32] Bazeley, G.P.; Cheung, Y.K.; Irons, B.M.; Zienkiewicz, O.C., Triangular elements in bending—conforming and non-conforming solution, () [33] Irons, B.M., Numerical integration applied to finite element methods, () · Zbl 0208.53303 [34] Irons, B.M.; Razzaque, A., Experience with the patch test for convergence of finite element method, (), 557-587 [35] De Arantes Oliveira, E.R., The patch test and the general convergence criteria of the finite element method, Internat. J. solids struct., 13, 159-178, (1977) · Zbl 0353.65063 [36] Strang, G.; Fix, G.J., An analysis of the finite element method, (1973), Prentice-Hall Englewood Cliffs, NJ · Zbl 0278.65116 [37] Taylor, R.L.; Simo, J.C.; Zienkiewicz, O.C.; Chan, C.H., The patch test—A condition for assessing FEM convergence, Internat. J. numer. methods engrg., 22, 39-62, (1986) · Zbl 0593.73072 [38] De Veubeke, B.Fraeijs, Variational principles and the patch test, Internat. J. numer. methods engrg., 8, 783-801, (1974) · Zbl 0284.73043 [39] Babuska, I., Error bounds for finite element methods, Numerische Mathematik, 16, 322-333, (1971) · Zbl 0214.42001 [40] Babuska, I., The finite element method with Lagrange multipliers, Numerische Mathematik, 20, 179-192, (1973) · Zbl 0258.65108 [41] Brezzi, F., On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers, Rairo, 8, 129-151, (1971) · Zbl 0338.90047 [42] Zienkiewicz, O.C.; Lefebvre, D., Three-field mixed approximation and the plate bending problem, Commun. appl. numer. methods, 3, 301-309, (1987) · Zbl 0613.73064 [43] Zienkiewicz, O.C.; Lefebvre, D., Mixed methods for F.E.M. and the patch test: some recent developments, () · Zbl 0661.65108 [44] Zienkiewicz, O.C.; Qu, S.; Taylor, R.L.; Nakazawa, S., The patch test for mixed formulation, Internat. J. numer. methods engrg., 23, 1873-1883, (1986) · Zbl 0614.65115 [45] Hughes, T.J.R., The finite element method, (1987), Prentice-Hall Englewood Cliffs, NJ [46] Zienkiewicz, O.C.; Taylor, R.L., () [47] Simo, J.C.; Rifai, M.S., A class of mixed assumed strain methods and the method of incompatible modes, Internat. J. numer. methods engrg., 29, 1595-1638, (1990) · Zbl 0724.73222 [48] Hughes, T.J.R.; Tezduyar, T.E., Finite element based upon Mindlin plate theory with particular reference to the four node bilinear isoparametric element, J. appl. mech., 48, 587-596, (1981) · Zbl 0459.73069 [49] Bathe, K.J.; Dvorkin, E.N., A four node plate bending element based on Reissner-Mindlin plate theory and mixed interpolation, Internat. J. numer. methods engrg., 21, 367-383, (1985) · Zbl 0551.73072 [50] Batoz, J.L.; Tahar, M.B., Evaluation of a new quadrilateral thin plate bending element, Internat. J. numer. methods engrg., 18, 1655-1677, (1982) · Zbl 0489.73080 [51] Timoshenko, S.; Woinowsky-Krieger, S., Theory of plates and shells, (1959), McGraw-Hill New York · Zbl 0114.40801 [52] Cao, Zhiyuan; Yang, Shengtian, Theory and applications of thick dynamics, (1983), Science Press, (in Chinese). [53] Babuska, I.; Scapolla, T., Benchmark computation and performance evaluation for rhombic plate bending problem, Internat. J. numer. methods engrg., 28, 155-179, (1989) · Zbl 0675.73041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.