×

zbMATH — the first resource for mathematics

A survey of parametrized variational principles and applications to computational mechanics. (English) Zbl 0848.73063
Summary: We describe recent developments in the area of parametrized variational principles (PVPs) and selected applications to finite element computational mechanics. A PVP is a variational principle containing free parameters that have no effect on the Euler-Lagrange equations. The theory of single-field PVPs, based on gauge functions (also known as null Lagrangians), is a subset of the inverse problems of variational calculus that have limited value. The paper describes the recent construction of multifield PVPs in several areas of elasticity and electromagnetics. It then discusses three applications to finite element computational mechanics: the derivation of high-performance finite elements, the development of element-level error indicators, and the construction of finite element templates. The paper concludes with an overview of open research areas.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
74P10 Optimization of other properties in solid mechanics
78M30 Variational methods applied to problems in optics and electromagnetic theory
PDF BibTeX Cite
Full Text: DOI
References:
[1] Courant, R, Variational methods for the solution of problems of equilibrium and vibrations, Bull. amer. math. soc., 49, 1-23, (1943) · Zbl 0810.65100
[2] Turner, M.J; Clough, R.W; Martin, H.C; Topp, L.J, Stiffness and deflection analysis of complex structures, J. aero. sci., 23, 805-823, (1956) · Zbl 0072.41003
[3] Frazer, R.A; Duncan, W.J; Collar, A.R, Elementary matrices, (1963), Cambridge University Press · Zbl 0021.22803
[4] Langefors, B, Analysis of elastic structures by matrix coefficients, with special regard to semimonocoque structures, J. aero. sci., 19, 451-458, (1952) · Zbl 0046.17402
[5] Levy, S, Computation of influence coefficients for aircraft structures with discontinuities and sweepback, J. aero. sci., 14, 547-560, (1947)
[6] Levy, S, Structural analysis and influence coefficients for delta wings, J. aero. sci., 20, 677-684, (1953)
[7] Argyris, J.H; Kelsey, S, Energy theorems and structural analysis, Aircraft engrg., Aircraft engrg., 27, (1955), Butterworths London, reprinted from · Zbl 0097.40304
[8] Clough, R.W, The finite element method in plane stress analysis, (), 345-378
[9] Fox, C, An introduction to the calculus of variations, (1950), Dover New York · Zbl 0041.42801
[10] Santilli, R, Foundations of theoretical mechanics I, (1978), Springer-Verlag Berlin
[11] Sewell, M.J, Maximum and minimum principles, (1987), Cambridge · Zbl 0652.49001
[12] Vujanovic, B.D; Jones, S.E, Variational methods in nonconservative phenomena, (1989), Academic Press London · Zbl 0715.70003
[13] Liu, S; Jiang, Z, General form of the generalized variational principle in elasticity, Comm. appl. numer. methods, 5, 749-760, (1988) · Zbl 0665.73019
[14] Liu, S, Extended Gurtin’s variational principles for linear elastodynamics, (), 649-650
[15] Oden, J.T; Reddy, J.N, Variational methods in theoretical mechanics, (1982), Springer-Verlag Berlin · Zbl 0324.73001
[16] Tonti, E, On the mathematical structure of a large class of physical theories, Accad. naz. lincei, 52, 48-56, (1972), Series III
[17] Tonti, E; Tonti, E, A mathematical model for physical theories, Accad. naz. lincei, Accad. naz. lincei, 52, 350-356, (1972), Series VIII · Zbl 0256.70012
[18] Felippa, C.A, Parametrized multifield variational principles in elasticity: I. mixed functionals, Comm. appl. numer. methods, 5, 69-78, (1989)
[19] Felippa, C.A, Parametrized multifield variational principles in elasticity: II. hybrid functionals and the free formulation, Comm. appl. numer. methods, 5, 79-88, (1989) · Zbl 0659.73015
[20] Reddy, J.N, On complementary variational principles for the linear theory of plates, J. structural mech., 4, 417-436, (1976)
[21] Reddy, J.N, Energy and variational methods in applied mechanics, (1984), Wiley/Interscience New York · Zbl 0635.73017
[22] Hartmann, F, The mathematical basis of structural mechanics, (1985), Springer-Verlag Berlin · Zbl 0567.73058
[23] Oden, J.T; Reddy, J.N, On dual complementary variational principles in mathematical physics, Internat. J. engrg. sci., 12, 1-29, (1974) · Zbl 0273.49066
[24] Pian, T.H.H; Tong, P, Basis of finite element methods for solid continua, Internat. J. numer. methods engrg., 1, 3-28, (1969) · Zbl 0252.73052
[25] Pian, T.H.H, Finite element methods by variational principles with relaxed continuity requirements, () · Zbl 0303.49027
[26] Washizu, K, Variational methods in elasticity and plasticity, (1972), Pergamon Press Oxford · Zbl 0164.26001
[27] Felippa, C.A; Militello, C, Developments in variational methods for high performance plate and shell elements, (), 191-216
[28] Bergan, P.G; Nygård, M.K, Finite elements with increased freedom in choosing shape functions, Internat. J. numer. methods. engrg., 20, 643-664, (1984) · Zbl 0579.73077
[29] Bergan, P.G; Felippa, C.A, A triangular membrane element with rotational degrees of freedom, Comput. methods appl. mech. engrg., 50, 25-69, (1985) · Zbl 0593.73073
[30] Felippa, C.A; Bergan, P.G, A triangular plate bending element based on an energy-orthogonal free formulation, Comput. methods appl. mech. engrg., 61, 129-160, (1987) · Zbl 0596.73048
[31] Militello, C; Felippa, C.A, A variational justification of the assumed natural strain formulation of finite elements: I. variational principles, Comput. & structures, 34, 431-438, (1990) · Zbl 0721.73038
[32] Militello, C; Felippa, C.A, A variational justification of the assumed natural strain formulation of finite elements: II. the four-node C0 plate element, Comput. & structures, 34, 439-444, (1990) · Zbl 0721.73039
[33] Bathe, K.J; Dvorkin, E.N, A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation, Internat. J. numer. meth. engrg., 21, 367-383, (1985) · Zbl 0551.73072
[34] Huang, H.C; Hinton, E, A new nine node degenerated shell element with enhanced membrane and shear interpolation, Internat. J. numer. methods engrg., 22, 73-92, (1986) · Zbl 0593.73076
[35] Park, K.C; Stanley, G.M, A curved Co shell element based on assumed natural-coordinate strains, J. appl. mech., 53, 278-290, (1976) · Zbl 0588.73137
[36] Simo, J.C; Hughes, T.J.R, On the variational foundations of assumed strain methods, J. appl. mech., 53, 51-54, (1986) · Zbl 0592.73019
[37] Militello, C; Felippa, C.A, The first ANDES elements: 9-dof plate bending triangles, Comput. methods appl. mech. engrg., 93, 217-246, (1991)
[38] Felippa, C.A; Militello, C, Variational formulation of high performance finite elements: parametrized variational principles, Comput. & structures, 36, 1-11, (1990) · Zbl 0709.73075
[39] Felippa, C.A, Parametrized variational principles encompassing compressible and incompressible elasticity, Internat. J. solids structures, 29, 57-68, (1991) · Zbl 0756.73093
[40] Felippa, C.A, Parametrized variational principles for micropolar elasticity, Internat. J. solids structures, 29, 2709-2721, (1992) · Zbl 0772.73100
[41] Hughes, T.J.R; Brezzi, F, On drilling degrees of freedom, Comput. methods appl. mech. engrg., 72, 105-121, (1989) · Zbl 0691.73015
[42] Felippa, C.A; Schuler, J, Parametrized variational principles for electromagnetodynamics, (), 171-194
[43] Felippa, C.A, The extended free formulation of finite elements in linear elasticity, J. appl. mech., 56, 609-616, (1989) · Zbl 0712.73089
[44] Alvin, K; de la Fuente, H.M; Haugen, B; Felippa, C.A, Membrane elements with corner drilling freedoms: I. the EFF element, Finite elements anal. design, 12, 163-187, (1992) · Zbl 0765.73060
[45] Felippa, C.A; Militello, C, Membrane elements with corner drilling freedoms: II. the ANDES element, Finite elements anal. design, 12, 189-201, (1992) · Zbl 0765.73061
[46] Felippa, C.A; Alexander, S, Membrane elements with corner drilling freedoms: III. implementation and performance validation, Finite elements anal. design, 12, 203-239, (1992) · Zbl 0765.73062
[47] Allman, D.J, A compatible triangular element including vertex rotations for plane elasticity analysis, Comput. & structures, 19, 1-8, (1984) · Zbl 0548.73049
[48] Babuška, I, The selfadaptive approach in the finite element method, (), 125-142
[49] Sewell, G, An adaptive computer program for the solution of div(P(X, Y)Grad U) = F(X, Y, U) on a polynomial region, (), 543-554
[50] Babuška, I; Miller, A, A feedback finite element method with a-posteriori error estimation: part I. the finite element method and some basic properties of the a-posteriori error indicator, Comput. methods appl. mech. engrg., 61, 1-40, (1987) · Zbl 0593.65064
[51] Babuška, I; Durán, R; Rodriguez, R, Analysis of the efficiency of an a-posteriori error estimator for linear triangular finite elements, SIAM J. numer. anal., 29, 947-964, (1992) · Zbl 0759.65069
[52] Demkowicz, L; Oden, J.T; Rachowicz, W; Hardy, O, Towards a universal h-p adaptive finite element strategy, part 1. constrained approximation and data structure, Comput. methods appl. mech. engrg., 77, 79-112, (1989) · Zbl 0723.73074
[53] Oden, J.T; Demkowicz, L, Advances in adaptive improvements: a survey of adaptive methods in computational mechanics, (), 441-468
[54] Oden, J.T; Demkowicz, L; Rachowicz, W; Westermann, T.A, Towards a universal h-p adaptive finite element strategy, part 2. A posteriori error adaptation, Comput. methods appl. mech. engrg., 77, 113-180, (1989) · Zbl 0723.73075
[55] Zienkiewicz, O.C; Zhu, J.Z, A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. numer. methods engrg., 24, 337-357, (1987) · Zbl 0602.73063
[56] Zienkiewicz, O.C; Kelly, D.W; Gago, J.P; Babuška, I, Hierarchical finite element approaches, error estimates and adaptive refinement, () · Zbl 0533.65073
[57] Zienkiewicz, O.C; Craig, A, A-posteriori error estimates and adaptive mesh refinement in the finite element method concepts, (), ch. 5 · Zbl 0564.65070
[58] Zienkiewicz, O.C; Craig, A, Adaptive refinement, error estimates, multigrid solution and hierarchic finite element method concepts, (), ch. 2
[59] Beltrán, F.J, Estimadores de error basados en principios variacionales multicampo para cálculos por elementos finitos, ()
[60] Militello, C, Application of parametrized variational principles to the finite element method, () · Zbl 0709.73075
[61] Militello, C; Felippa, C.A, r-adaptive methods based on element level error estimators for parallel analysis of plates and shells, (), also in · Zbl 0951.74061
[62] Melosh, R.J; Marcal, P.V, An energy basis for mesh refinement of structural continua, Internat. J. numer. methods engrg., 11, 1083-1091, (1977) · Zbl 0359.73065
[63] Beltrán, F.J; Alarcón, E, Estimadores del error de discretización con principios variacionales multicampo: I. elasticidad, Rev. internat. Métodos numer. Cálculo diseño ingenieria, 8, 43-55, (1992)
[64] Beltrán, F.J; Alarcón, E, Estimadores del error de discretizaci’on con principios variacionales multicampo: II. flexión de places, Rev. internat. Métodos numer. Cálculo diseño ingenieria, 8, 139-156, (1992)
[65] Beltrán, F.J; Alarcón, E, Accuracy estimates based on multifield variational principles, Eur. J. mech. A/solids, 11, 487-518, (1992) · Zbl 0765.73074
[66] Felippa, C.A, Refined finite element analysis of linear and nonlinear two-dimensional structures, () · Zbl 0313.73062
[67] Militello, C; Felippa, C.A, The individual element test revisited, (), 554-564
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.