zbMATH — the first resource for mathematics

Differential calculus on \(ISO_ q(N)\), quantum Poincaré algebra and \(q\)-gravity. (English) Zbl 0848.58004
Summary: We present a general method to deform the inhomogeneous algebras of the \(B_n\), \(C_n\), \(D_n\) type, and find the corresponding bicovariant differential calculus. The method is based on a projection from \(B_{n + 1}\), \(C_{n + 1}\), \(D_{n + 1}\). For example we obtain the (bicovariant) inhomogeneous \(q\)-algebra \(ISO_q (N)\) as a consistent projection of the (bicovariant) \(q\)-algebra \(SO_q (N + 2)\). This projection works for particular multiparametric deformations of \(SO (N + 2)\), the so-called “minimal” deformations. The case of \(ISO_q (4)\) is studied in detail: a real form corresponding to a Lorentz signature exists only for one of the minimal deformations, depending on one parameter \(q\). The quantum Poincaré Lie algebra is given explicitly: it has 10 generators (no dilatations) and contains the classical Lorentz algebra. Only the commutation relations involving the momenta depend on \(q\). Finally, we discuss a \(q\)-deformation of gravity based on the “gauging” of this \(q\)-Poincaré algebra: the Lagrangian generalizes the usual Einstein-Cartan Lagrangian.

46L85 Noncommutative topology
46L87 Noncommutative differential geometry
17B37 Quantum groups (quantized enveloping algebras) and related deformations
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
83C45 Quantization of the gravitational field
Full Text: DOI arXiv
[1] ’t Hooft, G.: Nucl. Phys.B62, 444 (1973); ’t Hooft, G., Veltman, M.: Ann. Inst. H. Poincaré20, 69 (1974) · doi:10.1016/0550-3213(73)90263-0
[2] Goroff, M.H., Sagnotti, A.: Phys. Lett.150B, 81 (1985); Nucl. Phys.B266, 709 (1986)
[3] Green, M.B., Schwarz, J., Witten, E.: Superstring theory. Cambridge: Cambridge University Press, 1987 · Zbl 0619.53002
[4] Connes, A.: Publ. Math. IHES Vol.62, 41 (1986); Géométrie non commutative. Paris: Inter Editions, 1990; Non-commutative geometry and physics, IHES/M/93/32; Majid, S.: Class. Quantum Grav.5, 1587 (1988); Int. J. Mod. Phys.A5, 4689 (1990)
[5] Drinfeld, V.: Sov. Math. Dokl.32, 254 (1985); Jimbo, M.: Lett. Math. Phys.10, 63 (1985);11, 247 (1986)
[6] Faddeev, L.D., Reshetikhin, N.Yu., Takhtajan, L.A.: Algebra and Analysis,1, 178 (1987)
[7] For a review see for ex. Majid, S.: Int. J. Mod. Phys.A5, 1 (1990) · Zbl 0709.17009 · doi:10.1142/S0217751X90000027
[8] Aschieri, P., Castellani, L.: Int. J. Mod. Phys.A8, 1667 (1993) · Zbl 0802.58007 · doi:10.1142/S0217751X93000692
[9] Woronowicz, S.L.: Publ. RIMS, Kyoto Univ., Vol.23, 1, 117 (1987); Commun. Math. Phys.111, 613 (1987) and Commun. Math. Phys.122, 125 (1989) · Zbl 0676.46050 · doi:10.2977/prims/1195176848
[10] Bernard, D.: Quantum Lie algebras and differential calculus on quantum groups. Progr. Theor. Phys. Suppl.102, 49 (1990); Phys. Lett.260B, 389 (1991) · Zbl 0784.17015
[11] Jurčo, B.: Lett. Math. Phys.22, 177 (1991) · Zbl 0753.17020 · doi:10.1007/BF00403543
[12] Carow-Watamura, U., Schlieker, M., Watamura, S., Weich, W.: Commun. Math. Phys.142, 605 (1991) · Zbl 0743.17015 · doi:10.1007/BF02099103
[13] Zumino, B.: Introduction to the Differential Geometry of Quantum Groups. In: Proc. Mathematical Physics X, Leipzig, Germany, 1991, ed. Schmüdgen, K., Berlin, Heidelberg, New York Springer, 1992, p. 20; Müller-Hoissen, F.: J. Phys.A25, 1703 (1992); Wu, K., Zhang R-J.: Commun. Theor. Phys.17, 331 (1992); Song, X.C.: Z. Phys.C55, 417 (1992) Sun, X.D., Wang, S.K.: Bicovariant differential calculus on quantum groupGL q(n). Worldlab-Beijing preprint CCAST-92-04, ASIAM-92-07, ASITP-92-12 (1992); Sudbery, A.: Phys. Lett.B284, 61 (1992), (see also later erratum); Schupp, P., Watts, P., Zumino, B.: Commun. Math. Phys.157, 305 (1993); LBL-32315, UCB-PTH-92/14; Zumino, B.: Differential calculus on quantum spaces and quantum groups. In: Proc. XIX ICGTMP Conf., Salamanca, Spain (1992), CIEMAT/RSEF, Madrid (1993), Vol. I, p. 41
[14] Castellani, L.: Phys. Lett.B279, 291 (1992); Aschieri, P., Castellani, L.: Phys. Lett.B293, 299 (1992), Castellani, L., Monteiro, M.A.R.: Phys. Lett.B314, 25 (1993) · doi:10.1016/0370-2693(92)90395-K
[15] Schupp, P., Watts, P., Zumino, B.: Lett. Math. Phys.25, 139 (1992); Cartan calculus for Hopf algebras and quantum groups. NSF-ITP-93-75, LBL-34215 and UCB-PTH-93/20; Schupp, P.: Quantum groups, non-commutative differential geometry and applications. Ph.D. Thesis, LBL-34942 and UCB-PTH-93/35 · Zbl 0765.17020 · doi:10.1007/BF00398310
[16] Zupnik, B.M.: Quantum deformations for the diagonal R-matrices. NIIPF-93/07. In: The Proceedings of the Workshop on Supersymmetry and quantum groups, Dubna 1993
[17] Gurevich, D.I.: Soviet Math. Dokl.33, 758 (1986)
[18] Castellani, L.: Lett. Math. Phys.30, 233 (1994) (contains the first part of the unpublished preprint On the quantum Poincaré group, DFTT-57-92, hep-th 9212013)
[19] Aschieri, P., Castellani, L.: Inhomogeneous quantum groupsIGL q,r(N): Universal enveloping algebra and differential calculus. DFTT-9/94 and hep-th 9408031. · Zbl 1044.81622
[20] Wornowicz, S.L.: Commun. Math. Phys.136, 399 (1991); Lett. Math. Phys.23, 25 (1991); Schlieker, M., Weich, W., Weixler, R.: Z. Phys. C-Particles and Fields53, 79 (1992); Celeghini, E., Giachetti, R., Sorace, E., Tarlini, M.: J. Math. Phys.32, 1159 (1991); Chakrabarti, A.: In: The Proceedings of the Wigner Symposium II, Goslar 1991; Schupp, P., Watts, P., Zumino, B.: Lett. Math. Phys.24, 141 (1992); Rembielinski, J.: Phys. Lett.B296, 335 (1992); Chaichian, M., Demichev, A.P.: Helsinki Univ. prep. HU-TFT-92-38, 1992; Castellani, L.: Phys. Lett.298, 335 (1993); Dobrev, V.K., Parashar, P.: J. Phys.A26, 699 (1993); Schlieker, M., Weich, W., Weixler, R.: Lett. Math. Phys.27, 217 (1993); Shariati, A., Aghamohammadi, A.: IPM-94-47, hep-th/9408059 · Zbl 0743.46080 · doi:10.1007/BF02100032
[21] Lukierski, J., Novicki, A., Ruegg, H., Tolstoy, V.N.: Phys. Lett.B264, 331 (1991); Lukierski, J., Novicki, A., Ruegg, H.: Phys. Lett.B271, 321 (1991) andB293, 344 (1992); Dobrev, V.: In: The Proceedings of the Quantum Groups Workshop, Goslar, 1991; J. Phys.A26, 1317 (1993); Ogievetsky, O., Schmidke, W.B., Wess, J., Zumino, B.: Commun. Math. Phys.150, 495 (1992); Chaichian, M., Demichev, A.P.: Proceedings of the Workshop Generalized Symmetries in Physics, Clausthal 1993; Majid, S.: J. Math. Phys.34, 2045 (1993) and DAMTP/93-68 · doi:10.1016/0370-2693(91)90358-W
[22] Schirrmacher, A.: J. Phys.A24, L1249 (1991) · Zbl 0761.17016 · doi:10.1088/0305-4470/24/21/002
[23] Reshetikhin, N.: Lett. Math. Phys.20, 331 (1990); Sudbery, A.: J. Phys.A23, L697 (1990); Demidov, D.D., Manin, Yu.I., Mukhin, E.E., Zhdanovich, D.V.: Progr. Theor. Phys. Suppl.102, 203 (1990); Schirrmacher, A.: Z. Phys.C50, 321 (1991); Fairlie, D.B., Zachos, C.K.: Phys. Lett.B256, 43 (1991) · Zbl 0719.17006 · doi:10.1007/BF00626530
[24] Celeghini, E., Giachetti, R., Reyman, A., Sorace, E., Tarlini, M.:SO q(n+1,n) as a real form ofSOfq(2n,C). Lett. Math. Phys.23, 45 (1991) · Zbl 0736.17019 · doi:10.1007/BF01811293
[25] Castellani, L.: Phys. Lett.B292, 93 (1992), and Mod. Phys. Lett.A9, 2835 (1994) · doi:10.1016/0370-2693(92)90613-9
[26] Castellani, L., D’ Auria, R., Fré, P.: Supergravity and Superstrings: A geometric perspective, Singapore: World Scientific, 1991; Castellani, L.: Int. J. Mod. Phys.A7, 1583 (1992) · Zbl 0753.53047
[27] Aschieri, P.: The space of vector fields on quantum groups. Preprint UCLA/93/TE/25 · Zbl 1044.46544
[28] Castellani, L.: Phys. Lett.B327, 22 (1994) hep-th 9402033 · doi:10.1016/0370-2693(94)91522-9
[29] Reshetikhin, N., Turaev, V.: Commun. Math. Phys.127, 1 (1990); Cotta-Ramusino, P., Rinaldi, M.: Commun. Math. Phys.142, 589 (1991) · Zbl 0768.57003 · doi:10.1007/BF02096491
[30] Aschieri, P., Castellani, L.: R-matrix formulation of the quantum inhomogenous groupsISO q,n(N) andISp q,n(N), DFTT-44/94 and hep-th 9411039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.