Jeong, Jinhee; Hussain, Fazle On the identification of a vortex. (English) Zbl 0847.76007 J. Fluid Mech. 285, 69-94 (1995). The objective definition of a vortex which should identify vortex cores in any flow is developed in the paper. It is shown by known examples that three common intuitive indicators of vortices – pressure minimum, closed or spiraling streamlines and pathlines, and isovorticity surfaces – are inadequate in detecting vortices in an unsteady flow, in general. Moreover, particular examples are given which show that recent Galilean-invariant definitions of a vortex (based on complex eigenvalues of velocity gradient tensor and on the second invariant of this tensor) are insufficient, as well. The authors propose a new definition of a vortex in an incompressible flow in terms of the eigenvalues of the symmetric tensor containing the sum of squares of the symmetric and antisymmetric parts of the velocity gradient tensor. This definition is found to represent correctly the topology and geometry of vortex cores for large variety of flows. Reviewer: A.Berezovski (Tallinn) Cited in 5 ReviewsCited in 629 Documents MSC: 76B47 Vortex flows for incompressible inviscid fluids 76D05 Navier-Stokes equations for incompressible viscous fluids 76F10 Shear flows and turbulence Keywords:vortex cores; pressure minimum; streamlines; pathlines; isovorticity surfaces; Galilean-invariant definitions; eigenvalues; symmetric tensor; velocity gradient tensor; topology; geometry PDF BibTeX XML Cite \textit{J. Jeong} and \textit{F. Hussain}, J. Fluid Mech. 285, 69--94 (1995; Zbl 0847.76007) Full Text: DOI References: [1] DOI: 10.1063/1.865401 · doi:10.1063/1.865401 [2] Kida, J. Fluid Mech. 230 pp 583– (1991) [3] DOI: 10.1063/1.866721 · doi:10.1063/1.866721 [4] Ferré, J. Fluid Mech. 198 pp 27– (1989) [5] DOI: 10.1063/1.857730 · doi:10.1063/1.857730 [6] DOI: 10.1063/1.858888 · Zbl 0782.76031 · doi:10.1063/1.858888 [7] Cantwell, J. Fluid Mech. 136 pp 321– (1983) [8] DOI: 10.1146/annurev.fl.13.010181.002325 · doi:10.1146/annurev.fl.13.010181.002325 [9] Bödewadt, Z. Angew. Math. Mech. 20 pp 141– (1940) [10] DOI: 10.1063/1.861736 · doi:10.1063/1.861736 [11] DOI: 10.1063/1.868324 · Zbl 0841.76092 · doi:10.1063/1.868324 [12] Bisset, J. Fluid Mech. 218 pp 439– (1990) [13] Mumford, J. Fluid Mech. 118 pp 241– (1982) [14] Moffatt, J. Fluid Mech. 18 pp 1– (1963) [15] Hussain, J. Fluid Mech. 101 pp 493– (1980) [16] Hussain, J. Fluid Mech. 180 pp 193– (1987) [17] Hussain, J. Fluid Mech. 173 pp 303– (1986) [18] Husain, J. Fluid Mech. 248 pp 315– (1993) [19] Virk, J. Fluid Mech. 260 pp 23– (1994) [20] Hunt, Proc. CANCAM, Trans. Can. Soc. Mech. Engrs 11 pp 21– (1987) [21] Tso, J. Fluid Mech. 203 pp 425– (1989) [22] Fiedler, J. Fluid Mech. 150 pp 281– (1985) [23] DOI: 10.1063/1.858826 · Zbl 0801.76023 · doi:10.1063/1.858826 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.