×

zbMATH — the first resource for mathematics

The quantum structure of spacetime of the Planck scale and quantum fields. (English) Zbl 0847.53051
It is generally believed that the description of spacetime by a Lorentzian manifold breaks down at very short distances of the order of the Planck length. One possibility to get a generalized theory is the usuage of a “non-commutative manifold” as a model for spacetime, i.e. the commutative algebra \({\mathcal C}_0 (M)\) of complex continuous functions on \(M\) vanishing at infinity is replaced by a non-commutative algebra \({\mathcal E}\) and points of \(M\) by pure states on \({\mathcal E}\). Following these ideas the authors propose in this paper a quantized version of flat Minkowski space. To get the algebra \({\mathcal E}\), the authors introduce uncertainty relations for different coordinates of spacetime events, which are motivated by Heisenberg’s principle and by Einstein’s theory of classical gravity. To implement them they use commutation relations between appropriate unbounded operators \(q_\mu\). The algebra \({\mathcal E}\) is a \(C^*\)-algebra to which the \(q_\mu\) are affiliated. On this “quantum spacetime” the authors develop calculus and they outline the definition of free fields and interacting fields. In particular, some first steps to adapt the usual perturbation theory are made, however, a detailed study of interacting QFT and of the smoothing of ultraviolet divergences is deferred to a subsequent paper. In the classical limit where the Planck length goes to zero, quantum spacetime reduces to the product of ordinary Minkowski space with a two component space whose components are homeomorphic to the tangent bundle of the 2-sphere.
Reviewer: M.Keyl (Berlin)

MSC:
53Z05 Applications of differential geometry to physics
46L60 Applications of selfadjoint operator algebras to physics
81T05 Axiomatic quantum field theory; operator algebras
81T20 Quantum field theory on curved space or space-time backgrounds
81V17 Gravitational interaction in quantum theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Amati, D., Ciafaloni, M., Veneziano, G.: Nucl. Phys.B347, 551 (1990); Amati, D.: On Spacetime at Small Distances. In: Sakharov Memorial Lectures, Kladysh, L.V., Fainberg, V.YA., eds., Nova Science P. Inc., 1992 · doi:10.1016/0550-3213(90)90375-N
[2] Ellis, J., Mavromatos, N.E., Nanopoulos, D.V.: A Liouville String Approach to Microscopic Time in Cosmology. Preprint CERN-TH. 7000/93 · Zbl 1001.83503
[3] Ashtekar, A.: Quantum Gravity: A Mathematical Physics Perspective. Preprint CGPG-93/12-2 · Zbl 0972.83541
[4] Kempf, A.: Uncertainty Relations in Quantum Mechanics with Quantum Group Symmetry. Preprint DAMT/93-65
[5] Woronowicz, S.L.: Compact Matrix Pseudogroups. Commun. Math. Phys.111, 613–665 (1987) · Zbl 0627.58034 · doi:10.1007/BF01219077
[6] Wheeler, J.A.: Geometrodynamics and the Issue of the Final State. In: Relativity, Groups and Topology. De Witt, C., De Witt, B., (eds.) Gordon and Breach 1965. Hawking, S.W., Spacetime Foam. Nucl. Phys.B144, 349, (1978) · Zbl 0148.46204
[7] Madore, J.: Fuzzy Physics. Ann. Phys.219, 187–198 (1992) · doi:10.1016/0003-4916(92)90316-E
[8] Connes, A.: Non-Commutative Geometry. Academic Press, 1994 · Zbl 0818.46076
[9] Connes, A., Lott, J.: Particle Models and Non Commutative Geometry. Nucl. Phys. B. (Proc. Suppl.)11B, 19–47 (1990); Kastler, D.: A detailed account of Alain Connes’ version of the standard model in non-commutative geometry, I, II. Rev. Math. Phys.5, 477–532 (1993); III, Preprint CPT-92/P. 2814; IV (with Th. Schücker), Preprint CPT-94/P.3092
[10] Schrader, R.: The Maxwell Group and the Quantum Theory of Particles in Classical Homogeneous Electric Fields. Forts. der Phys.20, 701–734 (1972) · doi:10.1002/prop.19720201202
[11] Filk, T.: Field Theory on the Quantum Plane. Preprint, University of Freiburg, August 1990, THEP 90/12
[12] Grosse, H., Madore, J.: A Noncommutative Version of the Schwinger Model. Phys. Lett.B283, 218 (1992) · doi:10.1016/0370-2693(92)90011-R
[13] Mack, G., Schomerus, V.: Models of Quantum Space Time: Quantum Field Planes. Preprint, Harvard University HUTMP 93-B335. Lukierski, J., Ruegg, H.: Quantum \(\kappa\)-Poincaré in any Dimension. Phys. Lett. B, to appear
[14] Doplicher, S., Fredenhagen, K., Roberts, J.E.: Spacetime Quantization Induced by Classical Gravity. Phys. Lett. B331, 33–44 (1994)
[15] Hawking, S.W., Ellis, G.F.R.: The large scale structure of spacetime. Cambridge: Cambridge U.P., 1973 · Zbl 0265.53054
[16] Knight, J.M.: Strict localization in Quantum Field Theory. J. Math. Phys.2, 439–471 (1961); Licht, A.L.: Strict localization. J. Math. Phys.4, 1443 (1963) · Zbl 0109.45103 · doi:10.1063/1.1703731
[17] Haag, R.: Local Quantum Physics. Berlin, Heidelberg, New York: Springer TMP, 1993 · Zbl 0792.46059
[18] Straumann, N.: General Relativity and Relativistic Astrophysics. Berlin-Heidelberg-New York: Springer, 1984
[19] Woronowicz, S.L.: Unbounded elements affiliated withC *-algebras and non-compact Quantum Groups. Commun. Math. Phys.136, 399–432 (1991). Woronowicz, S.L.:C *-Algebras Generated by Unbounded Elements. Preprint 1994; Baaj, S.: Multiplicateur non borné. Thèse, Université Paris VII 1980 · Zbl 0743.46080 · doi:10.1007/BF02100032
[20] Pedersen, G.K.:C *-Algebras and their Automorphism Groups. New York: Acad. Press, 1979 · Zbl 0416.46043
[21] Dixmier, J.:C *-Algebras. Amsterdam: North Holland, 1980
[22] Von Neumann, J.: Über die Eindeutigkeit der Schrödingerschen Operatoren. Math. Annalen104, 570–578 (1931) · Zbl 0001.24703 · doi:10.1007/BF01457956
[23] Filk, T.: Renormalizability of Field Theories on Quantum Spaces, Preprint University of Freiburg, THEP 94/15, 1994
[24] Didonato P. et al. eds.: Sympletic Geometry and Mathematical Physics. Actes du Colloque en Honneur de J.M. Souriau, Basel, Boston: Birkhäuser, 1991
[25] Rieffel, M.A.: Deformation Quantization of Heisenberg Manifolds. Commun. Math. Phys.122, 531–562 (1989) · Zbl 0679.46055 · doi:10.1007/BF01256492
[26] Landsman, N.P.: Strict Deformation Quantization of a Particle in External Gravitational and Yang Mills Fields. J. Geom. Phys.12, 93–132 (1993) · Zbl 0789.58081 · doi:10.1016/0393-0440(93)90010-C
[27] Doplicher, S., Fredenhagen, K.: in preparation
[28] Maggiore, M.: Quantum Groups, Gravity, and the generalized uncertainty principle, Phys. Rev.D49, 5182–5187 (1994); Phys. Lett. B304, 65–69 and319, 83–86 (1993) · doi:10.1103/PhysRevD.49.5182
[29] Geray, L.J.: Quantum Gravity and minimum Length. Preprint Imperial/TP/93-94/20, gr-qc/9403008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.