×

Finite element solution strategies for large-scale flow simulations. (English) Zbl 0846.76041

Summary: Large-scale flow simulation strategies involving implicit finite element formulations are described in the context of incompressible flows. The stabilized space-time formulation for problems involving moving boundaries and interfaces is presented, followed by a discussion of mesh moving schemes. The methods of solution of large linear systems of equations are reviewed, and an implementation of the entire finite element code, permitting the use of totally unstructured meshes, on a massively parallel supercomputer is considered. As an example, this methodology is applied to a flow problem involving three-dimensional simulation of liquid sloshing in a tank subjected to vertical vibrations.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Harlow, F.H.; Welch, J.E.; Shannon, J.P.; Daly, B.J., The MAC method, ()
[2] Daly, B.J., A technique for including surface tension effects in hydrodynamics calculations, J. comput. phys., 4, 97-117, (1969) · Zbl 0197.25301
[3] Chan, R.K.C.; Street, R.L., A computer study of finite-amplitude water waves, J. comput. phys., 6, 68-94, (1970) · Zbl 0207.27403
[4] Hirt, C.W.; Nichols, B.D., Volume of fluid (VOF) method for the dynamics of free boundaries, J. comput. phys., 39, 201-225, (1981) · Zbl 0462.76020
[5] Hirt, C.W.; Cook, J.L.; Butler, T.D., A Lagrangian method for calculating the dynamics of an incompressible fluid with free surface, J. comput. phys., 5, 103-124, (1970) · Zbl 0194.57704
[6] Okamoto, T.; Kawahara, M., Two-dimensional sloshing analysis by Lagrangian finite element method, Internat. J. numer. methods fluids, 11, 453-477, (1990) · Zbl 0711.76008
[7] Hirt, C.W.; Amsden, A.A.; Cook, J.L., An arbitrary Lagrangian Eulerian computing method for all flow speeds, J. comput. phys., 14, 227-253, (1974) · Zbl 0292.76018
[8] Hughes, T.J.R.; Liu, W.K.; Zimmermann, T.K., Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput. methods appl. mech. engrg., 29, 329-349, (1981) · Zbl 0482.76039
[9] Huerta, A.; Liu, W.K., Viscous flow with large free surface motion, Comput. methods appl. mech. engrg., 69, 277-324, (1988) · Zbl 0655.76032
[10] Soulaimani, A.; Fortin, M.; Dhatt, G.; Ouellet, Y., Finite element simulation of two- and three-dimensional free surface flows, Comput. methods appl. mech. engrg., 86, 265-296, (1991) · Zbl 0761.76037
[11] Jamet, P.; Bonnerot, R., Numerical solution of the Eulerian equations of compressible flow by a finite element method which follows the free boundary and the interfaces, J. comput. phys., 18, 21-45, (1975) · Zbl 0303.76030
[12] Bonnerot, R.; Jamet, P., Numerical computation of the free boundary for the two-dimensional Stefan problem by space-time finite elements, J. comput. phys., 25, 163-181, (1977) · Zbl 0364.65091
[13] Lynch, D.R.; Gray, W.G., Finite element simulation of flow in deforming regions, J. comput. phys., 36, 135-153, (1980) · Zbl 0433.76018
[14] Frederiksen, C.S.; Watts, A.M., Finite-element method for time-dependent incompressible free surface flows, J. comput. phys., 39, 282-304, (1981) · Zbl 0479.76042
[15] Jamet, P., Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain, SIAM J. numer. anal., 15, 912-928, (1978) · Zbl 0434.65091
[16] Hughes, T.J.R.; Hulbert, G.M., Space-time finite element methods for elastodynamics: formulations and error estimates, Comput. methods appl. mech. engrg., 66, 339-363, (1988) · Zbl 0616.73063
[17] Hansbo, P.; Szepessy, A., A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations, Comput. methods appl. mech. engrg., 84, 175-192, (1990) · Zbl 0716.76048
[18] Tezduyar, T.E.; Behr, M.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces — the deforming-spatial-domain/space-time procedure: I. the concept and the preliminary numerical tests, Comput. methods appl. mech. engrg., 94, 339-351, (1992) · Zbl 0745.76044
[19] Tezduyar, T.E.; Behr, M.; Mittal, S.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces — the deforming-spatial-domain/space-time procedure: II. computation of free-surface flows, two-liquid flows, and flows with drifting cylinders, Comput. methods appl. mech. engrg., 94, 353-371, (1992) · Zbl 0745.76045
[20] Behr, M.; Johnson, A.; Kennedy, J.; Mittal, S.; Tezduyar, T.E., Computation of incompressible flows with implicit finite element implementations on the connection machine, Comput. methods appl. mech. engrg., 108, 99-118, (1993) · Zbl 0784.76046
[21] Tezduyar, T.E.; Behr, M.; Mittal, S.; Johnson, A.A., Computation of unsteady incompressible flows with the finite element methods — space-time formulations, iterative strategies and massively parallel implementations, (), 7-24
[22] Mittal, S.; Tezduyar, T.E., A finite element study of incompressible flows past oscillating cylinders and airfoils, Internat. J. numer. methods fluids, 15, 1073-1118, (1992)
[23] Mittal, S., Stabilized space-time finite element formulations for unsteady incompressible flows involving fluid-body interactions, ()
[24] Hansbo, P., The characteristic streamline diffusion method for the time-dependent incompressible Navier-Stokes equations, Comput. methods appl. mech. engrg., 99, 171-186, (1992) · Zbl 0825.76423
[25] Aliabadi, S.; Tezduyar, T.E., Space-time finite element computation of compressible flows involving moving boundaries and interfaces, Comput. methods appl. mech. engrg., 107, 209-223, (1993) · Zbl 0798.76037
[26] Benque, J.P.; Haugel, A.; Viollet, P.L., Numerical methods in environmental fluid mechanics, ()
[27] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. methods appl. mech. engrg., 32, 199-259, (1982) · Zbl 0497.76041
[28] Hughes, T.J.R.; Franca, L.P.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. circumventing the babus̆ka-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. methods in appl. mech. engrg., 59, 85-99, (1986) · Zbl 0622.76077
[29] Tezduyar, T.E.; Mittal, S.; Ray, S.E.; Shih, R., Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements, Comput. methods appl. mech. engrg., 95, 221-242, (1992) · Zbl 0756.76048
[30] Franca, L.P.; Hughes, T.J.R., Two classes of mixed finite element methods, Comput. methods appl. mech. engrg., 69, 89-129, (1988) · Zbl 0651.65078
[31] Behr, M.; Franca, L.P.; Tezduyar, T.E., Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows, Comput. methods appl. mech. engrg., 104, 31-48, (1993) · Zbl 0771.76033
[32] Franca, L.P.; Frey, S.L., Stabilized finite element methods: II. the incompressible Navier-Stokes equations, Comput. methods appl. mech. engrg., 99, 209-233, (1992) · Zbl 0765.76048
[33] Hecht, F.; Satel, E., Emc^{2} un logiciel d’édition de maillages et de contours bidimensionnels, ()
[34] Hughes, T.J.R., The finite element method. linear static and dynamic finite element analysis, (1987), Prentice Hall Englewood Cliffs, NJ
[35] Cuthill, E.; McKee, J., Reducing the bandwidth of sparse symmetric matrices, (), 157-172
[36] George, J.A., Computer implementation of the finite element method, ()
[37] Young, D.M., A historical overview of iterative methods, Comput. phys. comm., 53, 1-17, (1989) · Zbl 0798.65035
[38] Saad, Y.; Schultz, M., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. sci. statist. comput., 7, 856-869, (1986) · Zbl 0599.65018
[39] Saad, Y., A flexible inner-outer preconditioned GMRES algorithm, SIAM J. sci. statist. comput., 14, 461-469, (1993) · Zbl 0780.65022
[40] Tezduyar, T.E.; Behr, M.; Abadi, S.K.; Mittal, S.; Ray, S.E., A new mixed preconditioning method for finite element computations, Computer methods appl. mech. engrg., 99, 27-42, (1992) · Zbl 0762.65060
[41] Saad, Y., Krylov subspace methods for solving large unsymmetric linear systems, Math. comp., 37, 105-126, (1981) · Zbl 0474.65019
[42] Hughes, T.J.R.; Winget, J.; Levit, I.; Tezduyar, T.E., New alternating direction procedures in finite element analysis based upon EBE approximate factorizations, (), 75-109 · Zbl 0563.73052
[43] Liou, J.; Tezduyar, T.E., A clustered element-by-element iteration method for finite element computations, (), 140-150 · Zbl 0766.65090
[44] Liou, J.; Tezduyar, T.E., Clustered element-by-element computations for fluid flow, (), 167-187 · Zbl 0766.65090
[45] Johan, Z., Data parallel finite element techniques for large-scale computational fluid dynamics, ()
[46] Simonelli, F.; Gollub, J.P., Surface wave mode interactions: effects of symmetry and degeneracy, J. fluid mech., 199, 471-494, (1989)
[47] Feng, Z.C.; Sethna, P.R., Symmetry-breaking bifurcations in resonant surface waves, J. fluid mech., 199, 495-518, (1989) · Zbl 0659.76026
[48] Engelman, M.S.; Sani, R.L.; Gresho, P.M., The implementation of normal and/or tangential boundary conditions in finite element codes for incompressible fluid flow, Internat. J. numer. methods fluids, 2, 225-238, (1982) · Zbl 0501.76001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.