×

zbMATH — the first resource for mathematics

Some early statistical contributions to the theory and practice of linear algebra. (English) Zbl 0845.62048
Summary: We outline the history of some of the concepts and techniques of linear algebra which are intimately connected with the development of the method of least squares and related fitting procedures. Our study concentrates on contributions made during the early years of the nineteenth century, but it is not entirely restricted to this period.

MSC:
62J05 Linear regression; mixed models
15A99 Basic linear algebra
62-03 History of statistics
01A55 History of mathematics in the 19th century
15-03 History of linear algebra
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aitken, A.C, On least squares and linear combination of observations, (), 42-47, Part A · Zbl 0011.26603
[2] Aitken, A.C, Determinants and matrices, (1939), Oliver and Boyd Edinburgh, Greenwood Press, London, 1983 · Zbl 0022.10005
[3] Aitken, A.C, On the estimation of many statistical parameters, (), 33-67, Part A · Zbl 0031.17203
[4] Benoît, E, Note sur une méthode de résolution des équations normales (procédé du commandant Cholesky), Bull. Géodésique Toulouse, 67-77, (1924)
[5] Ben-Tal, A; Teboule, M, A geometric property of the least-squares solution of linear equations, Linear algebra appl., 139, 165-170, (1990) · Zbl 0704.15005
[6] Bienaymé, I.J, Sur la probabilité des erreurs d’après la methode des moindres carrés, J. math. pures appl. ser. 1, 17, 33-78, (1852)
[7] Bienaymé, I.J, Remarques sur LES différences qui distinguent l’interpolation de M. Cauchy de la méthode des moindres carrés, et qui assurent la supériorité de cette méthode, C. R. acad. sci. Paris, 37, 5-13, (1853)
[8] Binet, J.P.M, Sur quelques formules d’algèbre, sur leur application à des expressions qui ont rapport avec axes conjugués des corps, Nouveau bull. sci. soc. philomatique, 2, 389-392, (1811)
[9] Bravais, A, Analyse mathématique sur LES probabilités des erreurs de situation d’un point, Mém. présentées acad. roy. sci. inst. France, 9, 255-332, (1846)
[10] Cauchy, A.L, Cours d’analyse de l’ecole royale polytechnique I, (), (1821), (Ser. 2)
[11] Cauchy, A.L, Sur LES centres, LES plans principaux et LES axes principaux des surfaces du second degré, (), 3, 9-35, (1828), (Ser. 2)
[12] Cauchy, A.L, Sur l’équation à l’aide de laquelle on détermine LES inégalités séculaires des mouvements des planètes, (), 4, 174-195, (1829), (Ser. 2)
[13] Cauchy, A.L, On a new formula for solving the problem of interpolation in a manner applicable to physical investigations, Philos. mag. (ser. 3), 49, 459-468, (1836)
[14] Cayley, A, Memoir on the theory of matrices, Philos. trans. roy. soc. London, 148, 17-37, (1858)
[15] Chebyshev, P.L, Sur LES functions continués, J. math. pures appl., Oeuvres, Vol. 1, 289-323, (1899), and Chelsea, New York, 1902, pp. 203-230. · JFM 09.0314.03
[16] de la Vallée Poussin, C.J, Sur la Méthode de l’approximation minimum, Ann. soc. sci. bruxelles, 35, 1-16, (1911) · JFM 42.0255.02
[17] Donkin, W.F, An essay on the theory of combinations of observations, Trans. Ashmolean soc., (1844)
[18] Donkin, W.F, La théorie de la combinaison des observations, J. math. pures appl. ser. 1, 15, 297-322, (1850)
[19] Doolittle, M.H, Method employed in this office in the solution of normal equations and in the adjustment of a triangulation, Report of the superintendent, US coast and geodetic survey (for 1878), Paper 3, 115-120, (1881), Appendix 8
[20] Eckart, C; Young, G, A principal axis transformation for non-Hermitian matrices, Bull. amer. math. soc., 45, 118-121, (1939) · JFM 65.0041.05
[21] Farebrother, R.W, An historical note on recursive residuals, J. roy. statist. soc. ser. B, 40, 373-375, (1978)
[22] Farebrother, R.W, Linear unbiased approximators of the disturbances of the standard linear model, Linear algebra appl., 67, 259-274, (1985) · Zbl 0567.62056
[23] Farebrother, R.W, Unbiased L1 and L∞ estimation, Comm. statist. theory methods, 14, 1941-1962, (1985) · Zbl 0584.62107
[24] Farebrother, R.W, Linear least squares computations, (1988), Marcel Dekker New York · Zbl 0715.65027
[25] Farebrother, R.W, The geometrical foundations of a class of estimators which minimise sums of Euclidean distances and related quantities, (), 337-349
[26] Farebrother, R.W, Boscovich’s method for correcting discordant observations, (), 255-261
[27] Farkas, J, Theorie der einfachen ungleichungen, J. reine angew. math., 124, 1-27, (1902) · JFM 32.0169.02
[28] Frobenius, G, Über das pfaffsche problem, J. reine angew. math., 82, 230-315, (1877) · JFM 09.0249.03
[29] Gauss, C.F, Theoria motus corporum coelestium in sectionibus conicis solem ambientium, (), (1809), F. Perthes and I. H. Besser Hamburg, English transl. by C. H. Davis, Little, Brown, Boston, 1857; French transl. by E. Dubois, Paris, 1864; German transl. by C. Haase, Hanover, 1865 · Zbl 1234.01016
[30] C.F. Gauss, Disquisitio de elementis ellipticis Palladis ex oppositionibus annorum 1803, 1804, 1805, 1807, 1808, 1809, Comment. Soc. Regiae Sci. Gottingensis Recentiores, 26 pp. 1811; reprinted in
[31] Gauss, C.F, Theoria combinationis erroribus minimis obnoxiae: pars prior, (), Vol. 4, 3-26, (1880), English transl. by G. W. Stewart
[32] Gauss, C.F, Theoria combinationis erroribus minimis obnoxiae: pars posterior, (), Vol. 4, 29-53, (1880), English transl. by G. W. Stewart
[33] Gauss, C.F, Supplementum theoriae combinationis erroribus minimis obnoxiae, Comment. soc. sci. regiae gottingensis recentiores, Werke, Vol. 4, 57-93, (1880), Göttingen
[34] Glaisher, J.W.L, On the method of least squares, Mem. roy. astron. soc., 40, 600-614, (1879) · JFM 12.0162.03
[35] Grattan-Guinness, I, A new type of question, (), 43-89 · Zbl 0807.01012
[36] Grattan-Guinness, I; Ledermann, W, Matrix theory, (), 775-786
[37] Haar, A, Über lineare ungleichungen, Acta litt. sci. regiae univ. hungar. Francisco-josephinae sect. sci. math., 2, 1-14, (1924-1926)
[38] Hald, A, T. N. Thiele’s contribution to statistics, Internat. statist. rev., 49, 1-20, (1981) · Zbl 0467.62003
[39] Hawkins, D.M, The accuracy of elemental set approximations for regression, J. amer. statist. assoc., 88, 580-589, (1993)
[40] Hawkins, T.W, Cauchy and the theory of matrices, Historia math., 2, 1-29, (1975) · Zbl 0296.01014
[41] Hawkins, T.W, The theory of matrices in the 19th century, (), 561-570
[42] Helmert, F.R, Über die berechnung des wahrscheinlichen fahlers aus einer endlichen anzahl beobachtungsfehler, Math. u. phys., 20, 300, (1875) · JFM 07.0113.01
[43] Helmert, F.R, Über die wahrscheinlichkeit der potenzsummen der beobachtungsfehler und über einige damit im zusammenhange stehende fragen, Z. math. u. phys., 21, 192, (1876) · JFM 08.0113.02
[44] Jacobi, C.G.J, De formatione et proprietatibus determinatium, (), 22, 355-392, (1841), reprinted in
[45] Lagrange, J.L, Recherches sur la méthode de maximis et minimus, (), 7, 3-21, (1759), reprinted in
[46] P.S. Laplace, Mémoire sur la figure de la Terre, Mém. Acad. Roy. Sci. Paris; reprinted in
[47] Laplace, P.S, Théorie analytique des probabilitiés, (), (1812), Mme. Couricer Paris, and Gauthier-Villars, Paris, 1886
[48] Laplace, P.S, premier supplément to Laplace [47], (1816)
[49] Laplace, P.S, deuxième supplément to Laplace [47], (1818)
[50] Legendre, A.M, Nouvelles Méthodes pour la Détermination des orbites des comètes, (1805), Courcier Paris
[51] Li, Y; Du, S, Chinese mathematics: A concise history, (1987), Oxford U.P Oxford, English transl. by J.N. Crossley and A.W.C. Lun
[52] Markov, A.A, The calculus of probability, (1900), German transl. 2nd ed. (1908), Leipzig, 1912
[53] Mayer, J.T, Abhandlung über die umwalzung des monds um seine axe, Kosmographische nachr. u. sammlungen, 1, 52-183, (1750), English transl. pp. 146-159 by G. Trenkler, Univ. of Dortmund, 1986
[54] Mikami, Y, The development of mathematics in China and Japan, (1913), B. G. Taubner Leipzig, Chelsea, New York, 1974 · JFM 43.0003.03
[55] Muir, T, The theory of determinants in the historical order of development, (1906), St Martin’s Press, Dover, New York, 1960 · JFM 45.1242.04
[56] Pizzetti, P, I fondamenti matematici per la critica dei risultati sperimentali, Atti univ. Genova, (1892), Reale 1st. per Sordomuti Genoa, reprinted in · JFM 24.0204.02
[57] Plackett, R.L, A historical note on the method of least squares, Biometrika, 36, 458-460, (1949) · Zbl 0041.46802
[58] Plackett, R.L, Karl Pearson and the chi-square-test, Internat. statist. rev., 51, 59-72, (1983) · Zbl 0501.62001
[59] Rao, C.R, Unified theory of least squares, Comm. statist., 1, 1-18, (1972)
[60] Rao, C.R, A lemma on optimization of a matrix function and a review of the unified theory of linear estimation, (), 397-418 · Zbl 0735.62066
[61] Robinson, D.W, Gauss and generalized inverses, Historia math., 7, 118-125, (1980) · Zbl 0438.15005
[62] Rousseeuw, P.J, Least Median of squares regression, J. amer. statist. assoc., 79, 871-880, (1984) · Zbl 0547.62046
[63] Sheynin, O.B; Sheynin, O.B, R. J. Boscovich’s work on probability, Arch. hist. exact sci., Arch. hist. exact sci., 28, 173-324, (1983) · Zbl 0263.01018
[64] Sheynin, O.B; Sheynin, O.B, A. A. Markov’s work on probability, Arch. hist. exact sci., Arch. hist. exact sci., 40, 387-377, (1989) · Zbl 0764.01007
[65] Sheynin, O.B, On the history of the principle of least squares, Arch. hist. exact sci., 46, 39-54, (1993) · Zbl 0783.01004
[66] Smith, D.E, A source book of mathematics, (1929), McGraw-Hill New York, Chelsea, New York, 1959 · JFM 55.0583.01
[67] Stay, B, (), (annotated by R. J. Boscovich)
[68] Stiefel, E.L, Note on Jordan elimination, linear programming and Tchebycheff approximation, Numer. math., 2, 1-17, (1960) · Zbl 0097.32306
[69] Stigler, S.M, The history of statistics: the quantification of uncertainty before 1900, (1986), Harvard U.P Cambridge, Mass · Zbl 0656.62005
[70] Stromberg, A.J, High breakdown estimators in nonlinear regression, (), 103-112
[71] Styan, G.P.H, On the efficiency of a linear unbiased estimator and on matrix versions of the Cauchy-Schwarz inequality, () · Zbl 0398.62053
[72] Subrahmanyam, M, A property of simple least squares estimates, Sankhyā ser. B, 34, 355-356, (1972)
[73] Thiele, T.N, The theory of observations, Ann. math. statist., 2, 165-308, (1931), Layton London, reprinted in · JFM 57.0608.02
[74] van der Waerden, B.L, Geometry of algebra in ancient civilizations, (1983), Springer-Verlag Berlin · Zbl 0534.01001
[75] Waterhouse, W.C, Gauss’s first argument for least squares, Arch. hist. exact sci., 41, 41-52, (1990) · Zbl 0766.01022
[76] Weierstrass, K, Zur theorie der bilinearen und quadratischen formen, (), 19-44, (1868), reprinted in · JFM 01.0054.04
[77] Whittaker, E.T; Robinson, G, The calculus of observations, (1924), Blackie and Son London, (1944) reprinted by Dover, New York, 1967 · JFM 50.0348.04
[78] Wu, C.F.J, Jackknife, bootstrap and other resampling methods in regression analysis, Ann. statist., 14, 1261-1295, (1986) · Zbl 0618.62072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.