De Grande-De Kimpe, N.; Khrennikov, A. Yu. The non-Archimedean Laplace transform. (English) Zbl 0845.46047 Bull. Belg. Math. Soc. - Simon Stevin 3, No. 2, 225-237 (1996). Summary: Topological properties of the spaces of analytic test functions and distributions are investigated in the framework of the general theory of non-archimedean locally convex spaces. The Laplace transform, topological isomorphism, is introduced and applied to the differential equations of non-archimedean mathematical physics (Klein-Gordon and Dirac propagators). Cited in 1 ReviewCited in 6 Documents MSC: 46S10 Functional analysis over fields other than \(\mathbb{R}\) or \(\mathbb{C}\) or the quaternions; non-Archimedean functional analysis 46F12 Integral transforms in distribution spaces 44A10 Laplace transform 46F05 Topological linear spaces of test functions, distributions and ultradistributions Keywords:Klein-Gordon propagators; spaces of analytic test functions; distributions; non-archimedean locally convex spaces; Laplace transform; topological isomorphism; differential equations of non-archimedean mathematical physics; Dirac propagators PDF BibTeX XML Cite \textit{N. De Grande-De Kimpe} and \textit{A. Yu. Khrennikov}, Bull. Belg. Math. Soc. - Simon Stevin 3, No. 2, 225--237 (1996; Zbl 0845.46047) Full Text: EuDML