×

zbMATH — the first resource for mathematics

Wall turbulence closure based on classical similarity laws and the attached eddy hypothesis. (English) Zbl 0843.76039
Based on the recently derived analytical expressions for shear stress distributions and on the concept of equilibrium layers of Rotta for self-similarity, a closure scheme is formulated for layers developing under arbitrary pressure gradients for not too large streamwise derivative of the Coles wake factor. Possible ways of handling the situations when streamwise derivative of the Coles wake factor is significant have also been discussed.

MSC:
76F10 Shear flows and turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S002211208600304X · Zbl 0597.76052
[2] DOI: 10.1098/rsta.1991.0066 · Zbl 0727.76062
[3] DOI: 10.1016/0376-0421(62)90014-3
[4] DOI: 10.2514/8.2938
[5] DOI: 10.1016/S0065-2156(08)70370-3
[6] Coles D. E., J. Aeronaut. Sci. 24 pp 459– (1957)
[7] DOI: 10.1017/S0022112056000135 · Zbl 0070.42903
[8] Lewkowicz A. K., Z. Flugwiss. Weltraumforsch. 6 pp 261– (1982)
[9] DOI: 10.1017/S0022112090001057
[10] DOI: 10.1017/S0022112072002903
[11] DOI: 10.1017/S0022112066000612
[12] DOI: 10.1063/1.1711395 · Zbl 0125.18102
[13] DOI: 10.1098/rsta.1991.0065
[14] DOI: 10.1098/rsta.1991.0070 · Zbl 0731.76033
[15] DOI: 10.1146/annurev.fl.23.010191.003125
[16] DOI: 10.1017/S0022112082001311 · Zbl 0517.76057
[17] DOI: 10.1017/S0022112061000883 · Zbl 0127.42602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.