zbMATH — the first resource for mathematics

The stress driven instability in elastic crystals: Mathematical models and physical manifestations. (English) Zbl 0843.73040
Equilibrium equations and stability conditions for the simple deformable elastic body are derived by means of considering a minimum of the static energy principle. Considering the case of negligible magnitude of the surface tension, we establish that an equilibrium state of a nonhydrostatically stressed simple elastic body (of any physically reasonable elastic energy potential and of any symmetry) possessing any small smooth part of free surface is always unstable with respect to relative transfer of the material particles along the surface. We also formulate the simplest problem of mathematical physics, revealing peculiarities and difficulties of the problem of equilibrium shape of elastic crystals, and discuss possible manifestations of the above-mentioned instability in the problems of crystal growth, material science, fracture, physical chemistry, and low-temperature physics.

74G99 Equilibrium (steady-state) problems in solid mechanics
74H99 Dynamical problems in solid mechanics
74B99 Elastic materials
82D25 Statistical mechanical studies of crystals
35R35 Free boundary problems for PDEs
Full Text: DOI
[1] Woodruff, D. P.,The Solid-Liquid Interface. Cambridge University Press, Cambridge (1973).
[2] Martin, J. W., Doherty, R. D.,Stability of Microstructure in Metallic Systems. Cambridge University Press, Cambridge (1975).
[3] Langer, J. S., ”Instabilities and Pattern Formation in Crystal Growth.”Rev. Mod. Phys., 52, (1980), pp. 1–27. · doi:10.1103/RevModPhys.52.1
[4] Pelce, P.,Dynamics of Curved Fronts. Academic Press, New York (1988).
[5] Paterson, M. S., ”Nonhydrostatical Thermodynamics and its Geological Applications.”Rev. Geophys. Space Phys., 11, (1974), pp. 355–389. · doi:10.1029/RG011i002p00355
[6] Roitburd, A. L., ”Martensitic Transformation as a Typical Phase Transformation in Solids.”Sol. State Phys. 33, (1978), pp. 317–390. · doi:10.1016/S0081-1947(08)60471-3
[7] Larch, F., Cahn, J. W., ”A Nonlinear Theory of Thermochemical Equilibrium of Solids under Stress.”Acta Metal., 26, (1978), pp. 53–60. · doi:10.1016/0001-6160(78)90201-8
[8] Khachaturyan, A. G.,Theory of Structural Transformation in Solids. John Wiley and Sons, New York (1983).
[9] Gurtin, M. E.,Phase Transformations and Material Instabilities in Solids. Academic Press, New York (1984). · Zbl 0557.00011
[10] Antman, S. S., Ericksen, J. L., Kinderlehrer, D., Muller, I., Eds.,Metastability and Incompletely Posed Problems. Springer-Verlag, New York (1987). · Zbl 0604.00008
[11] Rascle, M., Serre, D., Slemrod, M., Eds.,PDEs and Continuum Models of Phase Transitions. Springer-Verlag, New York (1989). · Zbl 0717.76011
[12] Grinfeld, M. A.,Thermodynamic Methods in the Theory of Heterogeneous Systems. Longman, New York (1991).
[13] Gibbs, J. W., ”On the Equilibrium of Heterogeneous Substances.” In:Collected Papers of J.W. Gibbs, (1876, 1878). · JFM 10.0759.01
[14] Grinfeld, M. A., ”The Influence of Surface Tension on Heterogeneous Equilibria,”Doklady, Earth Sci. Sect., 283, (1985), pp. 27–30. (English translation, Russian origin:Dokl. AN SSSR, 283, (1985), pp. 1139–1143).
[15] Grinfeld, M. A., ”Instability of the Separation Boundary between a Non-hydrostatically Stressed Elastic Body and a Melt.”Soviet Physics Doklady, 31, (1986), pp. 831–834. (English translation, Russian origin:Dokl. AN SSSR, 290, (1986), pp. 1358–1364).
[16] Grinfeld, M. A., ”Instability of the Equilibrium of a Non-hydrostatically Stressed Body and a Melt.”Fluid Dynam., 22, (1987). (English translation, Russian origin:Izv. AN SSSR, Mekhan, Zhidk. Gaza, No. 2, (1987), pp. 3–7).
[17] Alexander, J. I. D., Johnson, W. C., ”Thermomechemical Equilibrium in Solid-Fluid Systems with Curved Interfaces.”J. Appl. Phys., 58, (1985), pp. 816–824. · doi:10.1063/1.336150
[18] Ball, J. M., James, R. D., ”Fine Phase Mixtures as Minimizers of Energy.”Arch. Rat. Mech. Anal., 97, (1987), pp. 13–52. · Zbl 0629.49020 · doi:10.1007/BF00281246
[19] Dacorogna, B.,Direct Methods in the Calculus of Variations. Springer-Verlag, New York (1989). · Zbl 0703.49001
[20] Fonseca, I., ”Interfacial Energy and the Maxwell Rule.”Arch. Rat. Mech. Anal., 101, (1988), pp. 63–93. · Zbl 0721.73005
[21] Sternberg, P., ”The Effect of Singular Perturbation on Nonconvex Variational Problems.”Arch. Rat. Mech. Anal., 101, (1988), pp. 209–260. · Zbl 0647.49021 · doi:10.1007/BF00253122
[22] Luckhaus, S., Modica, L., ”The Gibbs-Thomson Relation within the Gradient Theory of Phase Transitions.”Arch. Rat. Mech. Anal., 107, (1989), pp. 71–83. · Zbl 0681.49012 · doi:10.1007/BF00251427
[23] Kohn, R., ”Surface Energy and Microstructure in Coherent Phase Transitions.” IMA workshopMicrostructure and Phase Transitions, (1990), (to be published).
[24] Gurtin, R.,Thermomechanics of Evolving Phase Boundaries. (manuscript), (1990). · Zbl 0723.73018
[25] Caroli, B., Caroli, C., Roulet, B., Voorhees, P. W., ”Effect of Elastic Stresses on the Morphological Stability of a Solid Sphere Growing from a Supersaturated Melt.”Acta Metal., 37, (1989), pp. 257–268. · doi:10.1016/0001-6160(89)90284-8
[26] Srolovitz, D. J., ”On the Instability of Surfaces of Stressed Solids.”Acta Metal., 37, (1989), pp. 621–625. · doi:10.1016/0001-6160(89)90246-0
[27] Leo, P. H., Sekerta, R. F., ”The Effect of Surface Stress on Crystal-Melt and Crystal-Crystal Equilibrium.”Acta Metal., 37, (1989), pp. 3119–3138. · doi:10.1016/0001-6160(89)90184-3
[28] Leo, P. H., Sekerka, R. F., ”The Effect of Elastic Fields on the Morphological Stability of a Precipitate Grown from Solid Solution.”Acta Metal., 37, (1989), pp. 3139–3149. · doi:10.1016/0001-6160(89)90185-5
[29] Nozières, P.,Growth and Shape of Crystals. Lectures given at Beg-Rohu, Brittany, Summer School, (1989), (mimeographed–will be published soon).
[30] Landau, L. D., Lifshitz, E. M.,Statistical Physics. Nauka (in Russian), (1964).
[31] Taylor, J. E., ”Crystalline Variational Problems.”Bull. Amer. Math. Soc., 84, (1978), pp. 568–588. · Zbl 0392.49022 · doi:10.1090/S0002-9904-1978-14499-1
[32] Finn, R.,Equilibrium Capillary Surfaces. Springer-Verlag, New York (1986). · Zbl 0583.35002
[33] Virga, E., ”Drops of Nematic Liquid Crystals.”Arch. Rat. Mech. Anal., 107, (1989), pp. 371–390. · Zbl 0688.76074 · doi:10.1007/BF00251555
[34] Thomas, T. Y.,Plastic Flow and Fracture in Solids. Academic Press, New York (1961). · Zbl 0095.38902
[35] Grinfeld, M. A., ”The Construction of a Continuum Theory of Recrystallization in Heterogeneous Systems.”Soviet Physics Doklady, 31, (1986), pp. 866–868. (English translation, Russian origin:Dokl. AN SSSR, 291, (1986), pp. 63–67).
[36] Davini, C., ”A Proposal for a Continuum Theory of Defective Crystals.”Arch. Rat. Mech. Anal., 96, (1986), pp. 295–317. · Zbl 0623.73002 · doi:10.1007/BF00251800
[37] Grinfeld, M. A., ”Stability of Heterogeneous Equilibrium in Systems Containing Solid Elastic Phases.”Doklady, Earth Sci. Sect., 265, (1982), pp. 21–24. (English translation, Russian origin:Dokl. AN SSSR, 265, (1982), pp. 836–840.
[38] Maddocks, J. H. ”On the Second-Order Conditions in Constrained Variational Principles.” (To appear onJ.O.T.A.).
[39] Rhebinder, P. A., Shchukin, E. D., ”Surface Phenomena in Solids During the Course of Their Deformation and Failure.”Soviet Physics, Uspekhi, 15, (1973).
[40] Bridgmen, P. W.,The Physics of High Pressure. Bell and Sons, Ltd., (1931).
[41] Kapustyan, V. M., ”Polymerization of Monomers in Solid State under High Pressures and Shear Stresses Reactions in Solids.”Dokl. AN SSSR, 179, (1968), pp. 627–628 (in Russian).
[42] Enikolopyan, N. S., ”Explosive Chemical Reactions in Solids.”Dokl. AN SSSR, 292, (1987), pp. 1165–1169 (in Russian).
[43] Enikolopyan, N. S., ”The Influence of Elastic and Thermoelastic Stresses in Ignition of Explosion of Solids under High Pressures.”Dokl. AN SSSR, 293, (1987), pp. 389–392 (in Russian).
[44] Enikolopyan, N. S., ”Detonation–A Solid-Phase Chemical Reaction.”Dokl. AN SSSR, 302, (1988), pp. 630–634, (in Russian).
[45] Matthews, J. W., ”Coherent Interfaces and Misfit Dislocations.” InEpitaxial Growth, Part B. Academic Press, New York (1975).
[46] van der Merwe, J. H., ”The Role of Lattice Misfit in Epitaxy.” InChemistry and Physics of Solid Surfaces, Vol. II, CRC Press, Inc., Boca Raton, FL, (1979).
[47] Gilmer, G. H., Grabow, M. H., ”Models of Thin Film Growth Modes.”Journal of Metals, June, (1987).
[48] Antman, S. S., Carbone, E. R., ”Shear and Necking Instabilities in Nonlinear Elasticity.”J. of Elasticity, 7, (1977), pp. 125–151. · Zbl 0356.73048 · doi:10.1007/BF00041087
[49] Miyazaki, T., ”The Formation of \(\gamma\) Precipitate Doublets in Ni-Al Alloys and their Energetic Stability.”Matert. Sci. Engng., 54, (1982), pp. 9–15. · doi:10.1016/0025-5416(82)90024-6
[50] Won-Hyuk, Rhee, Yoon, Duk, N., ”The Instability of Solid-Liquid Interface in Mo-Ni Alloy Induced by Diffusional Coherency Strain.”Acta Metall., 35, (1987), pp. 1447–1451. · doi:10.1016/0001-6160(87)90090-3
[51] Rittel, D., ”The Influence of Microstructure on the Macroscopic Pattern of Surface Instabilities in Metals.”Scripta Meta. Mater., 24, (1990), pp. 1759–1764. · doi:10.1016/0956-716X(90)90542-O
[52] Balibar, S., Edwards, D. D., Saam, W. F., ”The Effect of Heat Flow and Non-Hydrostatic Strain on the Surface of Helium Crystals.”J. Low Temp. Phys., 82, (1991), pp. 119–143. · doi:10.1007/BF00681525
[53] Bodensohn, J., Nicolai, K., Leiderer, P., ”The Growth of Atomically Rough4He Crystals.”Z. Phys., B, Condensed Matter, 64, (1986), pp. 55–64. · doi:10.1007/BF01313689
[54] Grinfeld, M., ”The Stress Driven Instabilities in Crystals: Mathematical Models and Physical Manifestations.” IMA preprint series 819, June (1991).
[55] Gao, H., ”Stress Concentration at Slightly Undulating Surfaces.”J. Mech. Phys. Solids, 39, (1991), pp. 443–458. · Zbl 0734.73007 · doi:10.1016/0022-5096(91)90035-M
[56] Spencer, B. J., Voorhees, P. W., Davis, S. H., ”Morphological Instability in Epitaxially Strained Dislocation-Free Solid Films.”Phys. Rev. Lett., 67, (1991), pp. 3696–3699. · doi:10.1103/PhysRevLett.67.3696
[57] Bowley, R. M., Nozières, P., ”The Effect of Heat Current on the Stability of the Liquid Solid Interface.”J. Phys., 2, (1992), pp. 433–441.
[58] Torii, R. H., Balibar, S., ”Helium Crystals Under Stress: the Grinfeld Instability.”J. Low Temp. Phys., 89, (1992), pp. 391–400. · doi:10.1007/BF00692612
[59] Nozières, P., ”Amplitude Expansion for the Grinfeld Instability due to Uniaxial Stress at a Solid Surface.”J. Phys. (to appear).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.