×

zbMATH — the first resource for mathematics

On the density of proper efficient points. (English) Zbl 0842.90101
Summary: Our aim is to discuss the density of proper efficient points. As an interesting application of the results in this paper, we want to prove a density theorem of Arrow, Barankin, and Blackwell.

MSC:
90C29 Multi-objective and goal programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] D. T. Luc, Theory of vector optimization, Lecture Notes in Econom. and Math. Systems, vol. 319, Springer-Verlag, Berlin, 1989.
[2] ——, Recession cones and the domination property in vector optimization, Math. Programming 49 (1990). · Zbl 0721.90065
[3] K. J. Arrow, E. W. Barankin, and D. Blackwell, Admissible points of convex sets, Contributions to the Theory of Games, Vol. II , Princeton Univ. Press, Princeton, NJ, 1953. · Zbl 0050.14203
[4] J. M. Borwein, The geometry of Pareto efficiency over cones, Math. Operationsforsch. Statist. Ser. Optim. 11 (1980), no. 2, 235 – 248 (English, with German and Russian summaries). · Zbl 0447.90077 · doi:10.1080/02331938008842650 · doi.org
[5] Johannes Jahn, A generalization of a theorem of Arrow, Barankin, and Blackwell, SIAM J. Control Optim. 26 (1988), no. 5, 999 – 1005. · Zbl 0652.90093 · doi:10.1137/0326055 · doi.org
[6] W.-T. Fu, A note on the Arrow-Barankin-Blackwell theorem, J. Systems Sci. Math. Sci. (1994). · Zbl 0835.46005
[7] Johannes Jahn, Mathematical vector optimization in partially ordered linear spaces, Methoden und Verfahren der Mathematischen Physik [Methods and Procedures in Mathematical Physics], vol. 31, Verlag Peter D. Lang, Frankfurt am Main, 1986. · Zbl 0578.90048
[8] G. R. Bitran and T. L. Magnanti, The structure of admissible points with respect to cone dominance, J. Optim. Theory Appl. 29 (1979), no. 4, 573 – 614. · Zbl 0389.52021 · doi:10.1007/BF00934453 · doi.org
[9] Roger Hartley, On cone-efficiency, cone-convexity and cone-compactness, SIAM J. Appl. Math. 34 (1978), no. 2, 211 – 222. · Zbl 0379.90005 · doi:10.1137/0134018 · doi.org
[10] S. Helbig, Approximation of the efficient point set by perturbation of the ordering cone, Z. Oper. Res. 35 (1991), no. 3, 197 – 220. · Zbl 0737.90051 · doi:10.1007/BF01415907 · doi.org
[11] Martin Petschke, On a theorem of Arrow, Barankin, and Blackwell, SIAM J. Control Optim. 28 (1990), no. 2, 395 – 401. · Zbl 0692.49005 · doi:10.1137/0328021 · doi.org
[12] Werner Salz, Eine topologische Eigenschaft der effizienten Punkte konvexer Mengen, VIII. Oberwolfach-Tagung über Operations Research (1976), Operations Res. Verfahren, XXIII, Hain, Königstein/Ts., 1977, pp. 197 – 202 (German). · Zbl 0413.90067
[13] Alicia Sterna-Karwat, Approximating families of cones and proper efficiency in vector optimization, Optimization 20 (1989), no. 6, 809 – 817. · Zbl 0683.90086 · doi:10.1080/02331938908843501 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.