×

zbMATH — the first resource for mathematics

Self-similar solutions for Navier-Stokes equations in \(\mathbb{R} ^ 3\). (English) Zbl 0842.35075
Summary: We construct self-similar solutions for three-dimensional incompressible Navier-Stokes equations, providing some examples of functional spaces where this can be done. We apply our results to a particular case of \(L^2\) initial data.

MSC:
35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bergh J., An introduction
[2] Cannone, M. Ondelettes, Paraproduits et Navier-Stokes. PhD Thesis. 1994., Université Paris IX. Diderot Editeurs. Ceremade F-75775 Paris Cedex
[3] Cannone, M., Meyer, Y. and Planchon, F. 1993-1994. Solution autosimiliares des équations de Navier-Stokes. Centre de Matheématiques. 1993-1994, Ecole Polytechnique. In Sé X-EDP.
[4] DOI: 10.1016/0022-0396(86)90096-3 · Zbl 0577.35058 · doi:10.1016/0022-0396(86)90096-3
[5] DOI: 10.1007/BF00276875 · Zbl 0587.35078 · doi:10.1007/BF00276875
[6] DOI: 10.1080/03605308908820621 · Zbl 0681.35072 · doi:10.1080/03605308908820621
[7] DOI: 10.1007/BF01174182 · Zbl 0545.35073 · doi:10.1007/BF01174182
[8] Kato T., Rend.Sem. Math. Univ. Padov, 32 pp 243– (1962)
[9] DOI: 10.1007/BF00276188 · Zbl 0126.42301 · doi:10.1007/BF00276188
[10] DOI: 10.1112/plms/s2-42.1.52 · Zbl 0015.25402 · doi:10.1112/plms/s2-42.1.52
[11] Serrin J., Arch. Rat. Mach. Anal. 9 pp 187– (1992)
[12] DOI: 10.1080/03605309208820892 · Zbl 0771.35047 · doi:10.1080/03605309208820892
[13] Triebel H., Monographs in Mathematics 78 (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.