×

zbMATH — the first resource for mathematics

Relative asymptotics for polynomials orthogonal with respect to a discrete Sobolev inner product. (English) Zbl 0840.42017
The asymptotic behavior of polynomials orthogonal with respect to the discrete Sobolev inner product \[ \langle h, g\rangle= \int hg d\mu+ \sum^m_{j= 1} \sum^{N_j}_{i= 1} M_{j, i} h^{(i)}(c_j) g^{(i)} (c_j) \] is investigated. In the definition of the inner product \(\mu\) is a certain type of real or complex measure defined on the real axis, and the \(c_j\) are complex numbers in the complement of \(\text{supp}(\mu)\). The polynomials are called Sobolev orthogonal polynomials. The main group of results deals with relative asymptotics, i.e., the asymptotic behavior \((n\to \infty)\) of the quotient \(Q_n/L_n\), where \(Q_n\) is the Sobolev orthogonal polynomial of order \(n\) and \(L_n\) the polynomial orthogonal with respect to the measure \(\mu\).
Reviewer: H.Stahl (Berlin)

MSC:
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] L. V. Ahlfors (1979): Complex Analysis, 3rd edn. New York: McGraw-Hill. · Zbl 0395.30001
[2] M. Alfaro, F. Marcellán, M. L. Rezola (1993):Orthogonal polynomials on Sobolev spaces: old and new directions. J. Comput. Appl. Math.,48:113-132. · Zbl 0790.42015 · doi:10.1016/0377-0427(93)90318-6
[3] O. Blumenthal (1898): Über die Entwicklung einer willkürlichen Funktion nach den Nennern des Kettenbruches für ? ?? 0 (?(?)d?/(z??)). Inaugural Dissertation, Göttingen.
[4] T. S. Chihara (1978) An Introduction to Orthogonal Polynomials. New York: Gordon and Breach. · Zbl 0389.33008
[5] W. D. Evans, L. L. Littlejohn, F. Marcellán, C. Markett, A. Ronveaux (to appear):On recurrence relations for Sobolev orthogonal polynomials. SIAM J. Math. Anal.
[6] T. W. Gamelin (1969): Uniform Algebras. Englewood Cliffs, NJ: Prentice-Hall. · Zbl 0213.40401
[7] J. Gilewicz (1985):Location of the zeros of polynomials satisfying three-term recurrence relations with complex coefficients, I. General case. J. Approx. Theory,43:1-14. · Zbl 0606.30007 · doi:10.1016/0021-9045(85)90142-X
[8] A. A. Gonchar (1975):On the convergence of Padé approximants for some classes of meromorphic functions. Mat. Sb.,97(139):607-629. (English translation (1975): Math. USSR-Sb.,26:555-575.)
[9] P. P. Korovkin (1958):The capacity of a set and polynomials which minimize an integral. Kaliningrad Ped. Inst. Uchenie Zap.,V:34-52.
[10] G. López (1988):Convergence of Padé approximants of Stieltjes type meromorphic functions and comparative asymptotics for orthogonal polynomials. Mat. Sb.,136(178):46-66. (English translation (1989): Math. USSR-Sb.,64:207-227.)
[11] G. López (1988):Relative asymptotics of orthogonal polynomials on the real axis. Mat. Sb.,137(179):500-525. (English translation (1990): Math. USSR-Sb.,65:505-527.)
[12] G. López (1989):Asymptotics of polynomials orthogonal with respect to varying measures. Constr. Approx.,5:199-219. · Zbl 0669.42012 · doi:10.1007/BF01889607
[13] G. López, D. Barrios, E. Torrano (1994):Zero distribution and asymptotics of polynomials satisfying three-term recurrence relations with complex coefficients. Mat. Sb.,184(11):63-92.
[14] A. Magnus (1987):Toeplitz matrix techniques and convergence of complex weight Padé approximants. J. Comput. Appl. Math.,19:23-38. · Zbl 0619.41014
[15] F. Marcellán, W. Van Assche (1993):Relative asymptotics for orthogonal polynomials with a Sobolev inner product. J. Approx. Theory,72:193-209. · Zbl 0771.42014 · doi:10.1006/jath.1993.1016
[16] A. Máté, P. Nevai, V. Totik (1985):Asymptotics for the ratio of leading coefficients of orthonormal polynomials on the unit circle. Constr. Approx.,1:63-69. · Zbl 0582.42012 · doi:10.1007/BF01890022
[17] A. Máté, P. Nevai, V. Totik (1987):Extensions of Szegö’s theory of orthogonal polynomials, II, III. Constr. Approx.,3:51-72, 73-96. · Zbl 0635.42023 · doi:10.1007/BF01890553
[18] A. Máté, P. Nevai, V. Totik (1987):Strong and weak convergence orthogonal polynomials. Amer. J. Math.,109:239-281. · Zbl 0633.42008 · doi:10.2307/2374574
[19] P. Nevai (1979): Orthogonal Polynomials. Memoirs of the American Mathematical Society, vol. 213. Providence, RI: American Mathematical Society. · Zbl 0416.42013
[20] E. A. Rakhmanov (1977):On the asymptotics of the ratio of orthogonal polynomials. Mat. Sb.,103(145):271-291. (English translation (1977): Math. USSR-Sb.,32:199-213.) · Zbl 0401.30033
[21] E. A. Rakhmanov (1982):On the asymptotics of the ratioo of orthogonal polynomials, II. Mat. Sb.,118)160):104-117. (English translation (1983): Math. USSR-Sb.,46:105-117.)
[22] E. A. Rakhmanov (1986):On the asymptotics of polynomials orthogonal on the circle with weights not satisfying Szegö’s condition. Mat. Sb.,130(172):151-169 (English translation (1987): Math. USSR-Sb.,58:149-167.)
[23] W. Rudin (1966): Real and Complex Analysis. New York: McGraw-Hill. · Zbl 0142.01701
[24] J. Shohat (1934): Théorie Générale des Polynômes Orthogonaux de Tchebichef. Mémorial des Sciences Mathématiques, vol. 66. Paris: Gauthier-Villars. · Zbl 0009.24604
[25] H. Stahl, V. Totik (1992). General Orthogonal Polynomials. Cambridge: Cambridge University Press. · Zbl 0791.33009
[26] J. L. Ullman (1972):On the regular behavior of orthogonal polynomials. Proc. London Math. Soc.,24:119-148. · Zbl 0232.33007 · doi:10.1112/plms/s3-24.1.119
[27] E. B. Van Vleck (1904):On the convergence of algebraic continued fractions whose coefficients have limiting values. Trans. Amer. Math. Soc.,5:253-262. · JFM 35.0233.03
[28] H. Widom (1967):Polynomials associated with measures in the complex plane. J. Math. Mech.,16:997-1013. · Zbl 0182.09201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.