×

zbMATH — the first resource for mathematics

Hydrodynamic stability and turbulence: Beyond transients to a self-sustaining process. (English) Zbl 0838.76026
A self-sustaining mechanism believed central to the instability of shear flows is described. It consists of three elements: formation of streaks by downstream rolls, breakdown of the streaks, and regeneration of the rolls from the streak breakdown. Each of the three elements is described and supported by numerical results. A simple model is suggested to describe the mechanism and to show that it coexists with the laminar state.

MSC:
76E05 Parallel shear flows in hydrodynamic stability
76F10 Shear flows and turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Drazin, Hydrodynamic Stability, (1981)
[2] Ellingsen, Stability of linear flow, Phys. Fluids 18 pp 487– (1975) · Zbl 0308.76030 · doi:10.1063/1.861156
[3] Landahl, Wave breakdown and turbulence, SIAM J. Appl. Math. 28 pp 775– (1975) · Zbl 0276.76023 · doi:10.1137/0128061
[4] Gustavsson, A resonance mechanism in plane Couette flow, J. Fluid Mech. 98 pp 149– (1980) · Zbl 0432.76049 · doi:10.1017/S0022112080000079
[5] Gustavsson, Resonant growth of three dimensional disturbances in plane Poiseuille flow, J. Fluid Mech. 112 pp 253– (1981) · Zbl 0471.76065 · doi:10.1017/S0022112081000384
[6] Landahl, A note on an algebraic instability of inviscid parallel shear flows, J. Fluid Mech. 98 pp 243– (1980) · Zbl 0428.76049 · doi:10.1017/S0022112080000122
[7] Benney, A new mechanism for linear and non-linear hydrodynamic instability, Stud. Appl. Math. 64 pp 18– (1981) · Zbl 0481.76048 · doi:10.1002/sapm1981643185
[8] Waleffe, Turbulent Shear Flows 8: Selected Papers From the Eighth International Symposium on Turbulent Shear Flows, Munich, Germany, Sept. 9-11, 1993 8 pp 37– (1993) · doi:10.1007/978-3-642-77674-8_4
[9] Ann. Res. Briefs, 1990,
[10] Benney, On the secondary motion induced by oscillations in a shear flow, Phys. Fluids 3 pp 656– (1961) · doi:10.1063/1.1706101
[11] Benney, A non-linear theory for oscillations in a parallel flow, J. Fluid Mech. 10 pp 209– (1961) · Zbl 0096.21201 · doi:10.1017/S0022112061000196
[12] Benney, Finite amplitude effects in an unstable laminar boundary layer, Phys. Fluids 7 pp 319– (1964) · Zbl 0124.20003 · doi:10.1063/1.1711201
[13] Schmid, A new mechanism for rapid transition involving a pair of oblique waves, Phys. Fluids A 4 pp 1986– (1992) · doi:10.1063/1.858367
[14] Benney, The evolution of disturbances in shear flows at high Reynolds numbers, Stud. Appl. Math. 70 pp 1– (1984) · Zbl 0566.76046 · doi:10.1002/sapm19847011
[15] Acarlar, A study of hairpin vortices in a laminar boundary layer, J. Fluid Mech. 175 pp 1– (1987) · doi:10.1017/S0022112087000272
[16] Gustavsson, Energy growth of three-dimensional disturbances in plane Poiseuille flow, J. Fluid Mech. 224 pp 241– (1991) · Zbl 0717.76044 · doi:10.1017/S002211209100174X
[17] Butler, Optimal perturbations and streak spacing in wall-bounded shear flows, Phys. Fluids A 5 pp 774– (1993) · doi:10.1063/1.858663
[18] Reddy, Energy growth in viscous channel flow, J. Fluid Mech. 252 pp 57– (1993) · Zbl 0789.76026 · doi:10.1017/S0022112093003738
[19] Trefethen, Hydrodynamic stability without eigenvalues, Science 261 pp 578– (1993) · Zbl 1226.76013 · doi:10.1126/science.261.5121.578
[20] Hamilton, Regeneration mechanisms of near-wall turbulence structures, Proc. Turbulent Shear Flows pp 9– (1993) · Zbl 0867.76032
[21] Tillmark, Experiments on transition in plane Couette flow, J. Fluid Mech. 235 pp 89– (1992) · doi:10.1017/S0022112092001046
[22] Lundbladh, Direct simulation of turbulent spots in plane Couette flow, J. Fluid Mech. 229 pp 499– (1991) · Zbl 0850.76256 · doi:10.1017/S0022112091003130
[23] Orr, The stability or instability of the steady motions of a perfect liquid and of a viscous liquid, Proc. Roy. Irish Acad. A. 27 pp 9– (1907) · JFM 38.0741.02
[24] Case, Hydrodynamic instability and the inviscid limit, J. Fluid Mech. J. Fluid Mech. pp 420– (1960)
[25] Case, Stability of inviscid plane Couette flow, Phys. Fluids 3 pp 143– (1960) · Zbl 0213.54306 · doi:10.1063/1.1706010
[26] Farrell, Optimal excitation of perturbations in viscous shear flows, Phys. Fluids 31 pp 2093– (1988) · doi:10.1063/1.866609
[27] Busse, Bounds on the transport of mass and momentum by turbulent flow between parallel plates, Z. Angew. Math. Phys. 20 pp 1– (1969) · Zbl 0164.29003 · doi:10.1007/BF01591113
[28] Malkus, Institute for Geophysic and Planetary Physics manuscript (1968)
[29] Stuart, The production of intense shear layers by vortex stretching and convection, NATO AGARD Report 514 pp 1– (1965)
[30] Pearson, Evolution of the flow field associated with a stream wise diffusing vortex, J. Fluid Mech. 146 pp 271– (1984) · Zbl 0561.76039 · doi:10.1017/S0022112084001853
[31] Moore, The interaction of a diffusing line vortex and an aligned shear flow, Proc. Roy. Soc. Lond. A 399 pp 367– (1985) · Zbl 0565.76036 · doi:10.1098/rspa.1985.0061
[32] Jang, On the origin of stream wise vortices in a turbulent boundary layer, J. Fluid Mech. 169 pp 109– (1986) · Zbl 0624.76069 · doi:10.1017/S0022112086000551
[33] Benney, A mean flow first harmonic theory for hydrodynamic instabilities, Stud. Appl. Math. 80 pp 37– (1989) · Zbl 0668.76056 · doi:10.1002/sapm198980137
[34] Meshalkin, Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid, J. Appl. Math. Mech. (PMM) 25 pp 1700– (1961) · Zbl 0108.39501 · doi:10.1016/0021-8928(62)90149-1
[35] Waleffe, On the three-dimensional instability of strained vortices, Phys. Fluids A 2 pp 76– (1990) · Zbl 0696.76052 · doi:10.1063/1.857682
[36] Meksyn, Stability of viscous motion between parallel planes for finite disturbances, Proc. Roy. Soc. Lond. A 208 pp 517– (1951) · Zbl 0043.40003 · doi:10.1098/rspa.1951.0177
[37] Nagata, Three-dimensional finite-amplitude solutions in plane Couette flow: Bifurcation from infinity, J. Fluid Mech. 217 pp 519– (1990) · doi:10.1017/S0022112090000829
[38] Clever, Three-dimensional convection in a horizontal layer subjected to constant shear, J. Fluid Mech. 234 pp 511– (1992) · Zbl 0744.76052 · doi:10.1017/S0022112092000892
[39] Jimenez, The minimal flow unit in near-wall turbulence, J. Fluid Mech. 225 pp 213– (1991) · Zbl 0721.76040 · doi:10.1017/S0022112091002033
[40] Bayly, Instability mechanisms in shear flow transition, Ann. Rev. Fluid Mech. 20 pp 359– (1988) · doi:10.1146/annurev.fl.20.010188.002043
[41] Orszag, Secondary instability of wall-bounded shear flows, J. Fluid Mech. 128 pp 347– (1983) · Zbl 0556.76039 · doi:10.1017/S0022112083000518
[42] Herbert, Secondary instability of plane channel flow to subharmonic three-dimensional disturbances, Phys. Fluids 26 pp 871– (1983) · doi:10.1063/1.864226
[43] Herbert, Secondary instability of boundary layers, Ann. Rev. Fluid Mech. 20 pp 487– (1988) · doi:10.1146/annurev.fl.20.010188.002415
[44] Rogers, Spanwise scale selection in plane mixing layers, J. Fluid Mech. 247 pp 321– (1993) · doi:10.1017/S0022112093000485
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.