zbMATH — the first resource for mathematics

CSA-groups and separated free constructions. (English) Zbl 0838.20025
A group \(G\) is called a CSA-group if all maximal Abelian subgroups are malnormal; i.e. \(M^x\cap M=1\) for every maximal Abelian subgroup \(M\) and \(x\in G\setminus M\). The class of CSA-groups contains all torsion free hyperbolic groups and all groups freely acting on \(\Lambda\)-trees. The authors describe conditions under which HNN-extensions and amalgamated free products of CSA-groups are again CSA. One relator CSA-groups are characterised as follows in the paper: a torsion free one-relator group is CSA if and only if it does not contain \(F_2\times\mathbb{Z}\) or one of the metabelian Baumslag-Solitar groups \(B_{1,n}=\langle x,y\mid yxy^{-1}=x^n\rangle\), \(n\in \mathbb{Z}\setminus \{0,1\}\); a one-relator group with torsion is CSA if and only if it does not contain the infinite dihedral group.
Reviewer: P.Zalesskij (Wien)

20E06 Free products of groups, free products with amalgamation, Higman-Neumann-Neumann extensions, and generalizations
20F05 Generators, relations, and presentations of groups
20E07 Subgroup theorems; subgroup growth
Full Text: DOI
[1] DOI: 10.1016/0022-4049(91)90139-S · Zbl 0749.20006
[2] DOI: 10.1007/BF02546390 · Zbl 0178.34901
[3] DOI: 10.1007/BF01054234 · Zbl 0684.32006
[4] Serre, Trees (1980) · Zbl 0548.20018
[5] DOI: 10.1090/S0002-9904-1968-12012-9 · Zbl 0174.04603
[6] Myasnikov, Proc. Inst. Appl. Math. Russian Acad. Sci. 17 (1994)
[7] Dicks, Groups acting on graphs 17 (1989) · Zbl 0665.20001
[8] Magnus, Combinatorial group theory 13 (1966)
[9] Lyndon, Combinatorial group theory (1977) · Zbl 0619.20013
[10] Gromov, MSRI Publications pp 75– (1987)
[11] DOI: 10.1007/BF01173844 · Zbl 0414.20032
[12] Gaglione, Proc. Ohio State-Denison Conference for H. Zassenhaus, S. Sehgal, R. Solman pp 149– (1993)
[13] Mal’tsev, Izv. Akad. Nauk USSR Ser. Mat. 13 pp 201– (1949)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.