zbMATH — the first resource for mathematics

Return probabilities for random walk on a half-line. (English) Zbl 0837.60070
The main result is the estimation of a rate of convergence of transition probability in the model of random walk with reflecting zone. To consider this problem the author uses the method of generating functions.

60G50 Sums of independent random variables; random walks
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
60E10 Characteristic functions; other transforms
Full Text: DOI
[1] Beardon, A. (1988).Geometry of Discrete Groups. Springer-Verlag, New York. · Zbl 0657.20042
[2] Bender, E. (1974). Asymptotic methods in enumeration.SIAM Review 16, 485–513. · Zbl 0294.05002 · doi:10.1137/1016082
[3] Bougerol, P. (1981). Théorème centrale limite local sur certains groupes des Lie.Ann. Sci. Ecole Normale Sup. Ser. 4,14, 403–432. · Zbl 0488.60013
[4] Feller, W. (1971).An Introduction to Probability and its Applications II, 2nd ed. Wiley & Sons, New York. · Zbl 0219.60003
[5] Lang, S. (1971).Algebra. Addison-Wesley, Reading. · Zbl 0848.13001
[6] Reed, M., and Simon, B. (1978).Methods of Mathematical Physics IV. Academic Press, New York. · Zbl 0401.47001
[7] Sawyer, S. (1978). Isotropic random walks on a tree.Zeit. Warsch. 42, 279–292. · Zbl 0362.60075 · doi:10.1007/BF00533464
[8] Spitzer, F. (1976).Principles of Random Walk. Springer-Verlag, New York. · Zbl 0359.60003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.