On the minimal martingale measure and the Föllmer-Schweizer decomposition. (English) Zbl 0837.60042

The concept of equivalent martingale measure for a semimartingale \(X\) is useful in problems related to the absence of arbitrage in stochastic finance. It has first been studied by Föllmer and Schweizer when \(X\) is a real process; in the paper under review, the multidimensional case is investigated. Three characterizations of the minimal martingale measure associated with \(X\) are given, and a previous result of J.-P. Ansel and C. Stricker [Ann. Inst. Henri Poincaré, Probab. Stat. 28, No. 3, 375-392 (1992; Zbl 0772.60033)] concerning the so-called Föllmer- Schweizer decomposition is extended to the multidimensional case.


60G44 Martingales with continuous parameter


Zbl 0772.60033
Full Text: DOI


[1] Ansel J.P., Annales de l’Institut Henri Poincaré 28 pp 375– (1992)
[2] Ansel J.P., Sémuieire de Probebilités pp 22– (1993)
[3] DOI: 10.1214/aop/1176992813 · Zbl 0608.94001
[4] Chou C.S., Sémuieire de Probebilités pp 128– (1980)
[5] Christopeit N., ”On the Existence and Characterization of Arbitrage-Free Measures in Contingent Claim Valuation” (1992) · Zbl 0806.60050
[6] Delbaen F., A General Version of the Fundamental Theorem of Asset Pricing (1993) · Zbl 0865.90014
[7] Dellacherie C., Probabilities and Potential B (1982) · Zbl 0494.60002
[8] Karoui N.EI, Journal on Control and Optimization (1992)
[9] Emery M., Sétuineite de Ptobebilités pp 152– (1980)
[10] Föllmer H., Applied Stocbastic Analysis 5 pp 389– (1991)
[11] DOI: 10.1111/j.1467-9965.1992.tb00027.x · Zbl 0900.90095
[12] Jacod J., Calcul Stochastique et Problémes de Martingales (1979) · Zbl 0414.60053
[13] Jacod J., Sémitieue de Probabilités pp 161– (1980)
[14] DOI: 10.1007/BF00641409 · Zbl 0375.60069
[15] DOI: 10.1016/0304-4068(92)90014-X · Zbl 0762.90014
[16] Schweizer M., Approximating Random Variables by Stochastic Integrals (1993) · Zbl 0814.60041
[17] Yoeurp C., Espace Orthogonal á une Semi-Martingale et Applications (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.