×

zbMATH — the first resource for mathematics

Monodromy of Boussinesq elliptic operators. (English) Zbl 0837.33012
Summary: Verdier’s program for classifying elliptic operators with a nontrivial centralizer is outlined. Examples of Boussinesq operators are developed.

MSC:
33E05 Elliptic functions and integrals
35Q53 KdV equations (Korteweg-de Vries equations)
32C38 Sheaves of differential operators and their modules, \(D\)-modules
32S40 Monodromy; relations with differential equations and \(D\)-modules (complex-analytic aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Segal, G. and Wilson, G.:Publ. Math. Inst. Hautes Études Sci. 61 (1985), 5. · Zbl 0592.35112
[2] Treibich, A. and Verdier, J.-L.: Variétés de Krichever des solitons elliptiques de KP,Proc. Indo-French Conference on Geometry, Hindustan Book Agency, Delhi, 1993. · Zbl 0837.14011
[3] Treibich, A.:Duke Math. J. 59 (1989), 611. · Zbl 0698.14029
[4] Treibich, A. and Verdier, J.-L.: Solitons elliptiques, The Grothendieck Festschrift III, Birkhäuser, Boston, 1990, 437. · Zbl 0726.14024
[5] Verdier, J.-L.:Algebraic Analysis 2 (1988), 901.
[6] Previato, E. and Verdier, J.-L.: Boussinesq elliptic solitons: the cyclic case,Proc. Indo-French Conference on Geometry, Hindustan Book Agency, Delhi, 1993, 173. · Zbl 0844.14016
[7] Previato, E.: The Calogero-Moser-Krichever system and elliptic Boussinesq solutions,Proc. CRM Workshop, Les publications CRM, Monréal, 1990, 57. · Zbl 0749.35047
[8] Deligne, P.:Equations différentielles à points singuliers réguliers, Lecture Notes in Math. 163, Springer, Berlin, Heidelberg, 1970.
[9] Novikov, S. P.:Soviet Math. Dokl. 25 (1982), 535.
[10] Krichever, I. M.:Functional Anal. Appl. 14 (1980), 282. · Zbl 0473.35071
[11] Treibich, A. and Verdier, J.-L.: Revêtements tangentiels et sommes de 4 nombres triangulaires,C.R. Acad. Sci. Paris, Série I 311 (1990).
[12] Adler, M. and van Moerbeke, P.: The trigonal case outside the big cell, private communication.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.