×

zbMATH — the first resource for mathematics

\(L^ q\)-estimates of spherical functions and an invariant mean-value property. (English) Zbl 0837.31003
Let \(D\) be a Cartan domain of rank \(r\) in \(\mathbb{C}^n\) and \(G\) be the connected component of the identity in the group of biholomorphic automorphisms of \(D\). A function \(f\in C^\infty (D)\) is called harmonic on \(D\) if \(Tf=0\) for all \(G\)-invariant differential operators \(T\) such that \(T1=0\). It is known that any harmonic function \(f\) satisfies the invariant mean value property \[ \int_D f(g (w)) dm(w)= f(g (0)), \qquad \forall g\in G, \tag{1} \] \(m\) being the normalized volume measure on \(D\). The converse is also true for functions \(f\in L^\infty (D)\).
On the other hand, it was shown in [P. Ahern, M. Flores and W. Rudin, J. Funct. Anal. 111, 380-397 (1993; Zbl 0771.32006)] that for the unit ball in \(\mathbb{C}^n\) (the case of the rank \(r=1\)) condition (1) for \(f\in L^1\) implies its harmonicity if and only if \(n< 12\).
In the paper under review it is proved that for Cartan domains of rank \(r>1\) harmonicity of a function \(f\in L^q (D)\) does not follow from the invariant mean value property (1) for all \(1\leq q< \infty\).

MSC:
31B10 Integral representations, integral operators, integral equations methods in higher dimensions
32M15 Hermitian symmetric spaces, bounded symmetric domains, Jordan algebras (complex-analytic aspects)
53C35 Differential geometry of symmetric spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] [AFR] P. Ahern, M. Flores and W. Rudin,An invariant volume-mean-value property, J. Funct. Anal.111 (1993), 380-397. · Zbl 0771.32006 · doi:10.1006/jfan.1993.1018
[2] [B] F. A. Berezin,General concept of quantization, Commun. Math. Phys.40 (1975), 153-174. · Zbl 1272.53082 · doi:10.1007/BF01609397
[3] [E] A. Erdelyi et al,Higher transdental functions, vol. 1, McGraw-Hill, New York-Toronto-London, 1953.
[4] [FK1] J. Faraut and A. Koranyi,Function spaces and reproducing kernels on bounded symmetric domains, J. Func. Anal.89 (1990), 64-89. · Zbl 0718.32026 · doi:10.1016/0022-1236(90)90119-6
[5] [FK2] J. Faraut and A. Koranyi,Analysis on symmetric cones, to appear.
[6] [Fu] H. Furstenberg,Poisson formula for semisimple Lie groups, Ann. Math.77 (1963), 335-386. · Zbl 0192.12704 · doi:10.2307/1970220
[7] [G] R. Godement.,Une généralisation des représentations de la moyenne pour les fonctions harmoniques, C. R. Acad. Sci. Paris234 (1952), 2137-2139. · Zbl 0049.30301
[8] [H] S. Helgason,Groups and geometric analysis, Academic Press, London, 1984. · Zbl 0543.58001
[9] [L] O. Loos,Bounded Symmetric Domains and Jordan Pairs University of California, Irvine, 1977.
[10] [P] J. Peetre,Berezin transform and Ha-plitz opertors, J. Oper. Theory24 (1990), 165-168. · Zbl 0793.47026
[11] [R] W. Rudin,Function Theory in the Unit Ball of ? n , Springer-Verlag, 1980. · Zbl 0495.32001
[12] [UU] A. Unterberger and H. Upmeier,Berezin transform and invariant differential operators, preprint (1993). · Zbl 0843.32019
[13] [Up] H. Upmeier,Jordan Algebras in Analysis, Operator Theory, and Quantum mechanics, Regional Conference in Mathematics No. 67, Amer. Math.Soc., 1987.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.