zbMATH — the first resource for mathematics

Tableaus for many-valued modal logic. (English) Zbl 0837.03017
Summary: We continue a series of papers on a family of many-valued modal logics, a family whose Kripke semantics involves many-valued accessibility relations. Earlier papers in the series presented a motivation in terms of a multiple-expert semantics. They also proved completeness of sequent calculus formulations for the logics, formulations using a cut rule in an essential way. In this paper a novel cut-free tableau formulation is presented, and its completeness is proved.

03B45 Modal logic (including the logic of norms)
03B50 Many-valued logic
03F05 Cut-elimination and normal-form theorems
Full Text: DOI
[1] Giambattista Amati and Fiora Pirri. A uniform tableau method for intuitionistic modal logics I.Studia Logica, 53:29-60, 1994. · Zbl 0797.03015
[2] Melvin C. Fitting.Proof Methods for Modal and Intuitionistic Logics. D. Reidel Publishing Co., Dordrecht, 1983. · Zbl 0523.03013
[3] Melvin C. Fitting. Destructive modal resolution.Journal of Logic and Computation, 1:83-97, 1990. · Zbl 0724.03011
[4] Melvin C. Fitting.First-Order Logic and Automated Theorem Proving. Springer-Verlag, 1990. · Zbl 0692.68002
[5] Melvin C. Fitting. Many-valued modal logics.Fundamenta Informaticae, 15:235-254, 1992. · Zbl 0745.03018
[6] Melvin C. Fitting. Many-valued modal logics, II.Fundamenta Informaticae, 17:55-73, 1992. · Zbl 0772.03006
[7] Melvin C. Fitting. Many-valued non-monotonic modal logics. In Anil Nerode and Mikhail Taitslin, editors,Logical Foundations of Computer Science ? Tver ’92, pages 139-150. Springer Lecture Notes in Computer Science, 620, 1992. · Zbl 0978.03518
[8] Melvin C. Fitting. Basic modal logic. In Dov M. Gabbay, C. J. Hogger, and J. A. Robinson, editors,Handbook of Logic in Artificial Intelligence and Logic Programming, volume 1, pages 368-448. Oxford University Press, 1993.
[9] Charles G. Morgan. Local and global operators and many-valued modal logics.Notre Dame Journal of Formal Logic, 20:401-411, 1979. · Zbl 0437.03009
[10] Osamu Morikawa. Some modal logics based on a three-valued logic.Notre Dame Journal of Formal Logic, 30:130-137, 1989. · Zbl 0665.03013
[11] Pascal Ostermann. Many-valued modal propositional calculi.Zeitschrift für mathematische Logik und Gründlagen der Mathematik, 34:343-354, 1988. · Zbl 0661.03011
[12] Pascal Ostermann. Many-valued modal logics: Uses and predicate calculus.Zeitschrift für mathematische Logik und Gründlagen der Mathematik, 36:367-376, 1990. · Zbl 0691.03009
[13] Gordon Plotkin and Colin Stirling. A framework for intuitionistic modal logics, extended abstract. In Joseph Y. Halpern, editor,Theoretical Aspects of Reasoning About Knowledge, Proceedings of the 1986 Conference, pages 399-406. Morgan Kaufmann, 1986.
[14] Helena Rasiowa and Roman Sikorski.The Mathematics of Metamathematics. PWN ? Polish Scientific Publishers, Warsaw, third edition, 1970. · Zbl 0239.02002
[15] Peter K. Schotch, Jorgen B. Jensen, Peter F. Larsen, and Edwin J. MacLellan. A note on three-valued modal logic.Notre Dame Journal of Formal Logic, 19:63-68, 1978. · Zbl 0364.02012
[16] Krister Segerberg. Some modal logics based on a three-valued logic.Theoria, 33:53-71, 1967. · Zbl 0189.00705
[17] G. Fischer Servi. Axiomatizations for some intuitionistic modal logics.Rend. Sem. Mat. Univers. Polit., 42:179-194, 1984. · Zbl 0592.03011
[18] Raymond M. Smullyan.First-Order Logic. Springer-Verlag, 1968. Somewhat revised edition, Dover Press, NY, 1994. · Zbl 0172.28901
[19] S. K. Thomason. Possible worlds and many truth values.Studia Logica, 37:195-204, 1978. · Zbl 0391.03014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.