zbMATH — the first resource for mathematics

Hereditarily structurally complete modal logics. (English) Zbl 0836.03014
An inference rule is an expression \(r\) of the form \[ {A_1 (x_1, \dots, x_n), \dots, A_m (x_1, \dots, x_n) \over B(x_1, \dots, x_n)}, \] where \(A_j (x_1, \dots, x_n)\), \(B(x_1, \dots, x_n)\) are formulas built up from the variables \(x_1, \dots, x_n\).
A rule \(r\) is called admissible in a logic \(\lambda\) iff for every collection of formulas \(C_1, \dots, C_n\), if \(\forall j\;A_j (C_1, \dots, C_n) \in \lambda\) then \(B(C_1, \dots, C_n) \in \lambda\). A rule \(r\) is called derivable in a logic \(\lambda\) if \(B\) is derivable from \(A_1, \dots, A_m\) by using theorems and postulated inference rules of \(\lambda\). A logic \(\lambda\) is called structurally complete iff every admissible \(\lambda\) rule is derivable in \(\lambda\). A logic \(\lambda\) is called hereditarily structurally complete if any logic extending \(\lambda\) is structurally complete.
The main result of the paper is a necessary and sufficient condition for modal logics over \(K4\) to be hereditarily structurally complete: a modal logic \(\lambda\) is hereditarily structurally complete iff \(\lambda\) is not included in any logic from a list of twenty special tabular logics.

03B45 Modal logic (including the logic of norms)
Full Text: DOI
[1] DOI: 10.1007/BF01982031 · Zbl 0598.03013 · doi:10.1007/BF01982031
[2] Reports on Mathematical Logic 6 pp 41– (1976)
[3] DOI: 10.1007/BF01178758 · Zbl 0414.03011 · doi:10.1007/BF01178758
[4] Logic containing K4, part I 39 pp 229– (1974)
[5] DOI: 10.1002/malq.19710170141 · Zbl 0228.02011 · doi:10.1002/malq.19710170141
[6] What is an inference rule 57 pp 1018– (1992)
[7] Indagationes Mathematicae 28 pp 317– (1966)
[8] Soviet Mathematics Doklady 19 pp 816– (1978)
[9] DOI: 10.1070/SM1977v031n02ABEH002303 · Zbl 0386.03011 · doi:10.1070/SM1977v031n02ABEH002303
[10] DOI: 10.1007/BF00370315 · Zbl 0457.03018 · doi:10.1007/BF00370315
[11] Finitely generated free Heyting algebras 51 pp 152– (1986)
[12] Reports on Mathematical Logic 6 pp 103– (1976)
[13] DOI: 10.1007/BF01084082 · Zbl 0375.02014 · doi:10.1007/BF01084082
[14] DOI: 10.1007/BF01463150 · Zbl 0315.02027 · doi:10.1007/BF01463150
[15] Algebra and Logic 11 pp 558– (1972)
[16] Reports on Mathematical Logic 6 pp 99– (1976)
[17] Splittings and the finite model property 58 pp 139– (1993)
[18] Reports on Mathematical Logic 7 pp 21– (1976)
[19] Investigations in modal and tense logics with applications to problems in philosophy and linguistics (1976) · Zbl 0374.02013
[20] Modal and classical logic (1983)
[21] An essay in classical modal logic 1 (1971)
[22] Rules of inference with parameters for intuitionistic logic 57 pp 912– (1992)
[23] DOI: 10.1016/0168-0072(90)90055-7 · Zbl 0709.03009 · doi:10.1016/0168-0072(90)90055-7
[24] Klassische und nichtklassische aussagenlogik (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.