zbMATH — the first resource for mathematics

Quantum deformations of \(D=4\) Poincaré and Weyl algebra from \(q\)- deformed \(D=4\) conformal algebra. (English) Zbl 0834.17021
The authors construct a \(q\)-deformation of the relativistic algebras as subalgebras and contractions of the real forms of the \(q\)-deformed \(\text{SL} (4, \mathbb{C})\), \(q\)-deformation of \(\text{SL} (4, \mathbb{C})\), performed in the standard way from a Cartan-Chevalley basis using Serre relations. The Lorentz quantum algebra and quantum Weyl algebra are defined as subalgebras of a real form of \(\text{SL}_q (4, \mathbb{C})\). A second form of \(q\)-deformed Poincaré algebras is obtained by a contraction of another real form of \(\text{SL}_q (4, \mathbb{C})\).

17B37 Quantum groups (quantized enveloping algebras) and related deformations
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
16W30 Hopf algebras (associative rings and algebras) (MSC2000)
16S30 Universal enveloping algebras of Lie algebras
Full Text: DOI
[1] Podleś, P.; Woronowicz, S.L., Commun. math. phys., 130, 381, (1990)
[2] Carow-Watamura, V.; Schlieker, M.; Scholl, M.; Watamura, S., Z. phys. C, 48, 159, (1990)
[3] Carow-Watamura, V.; Schlieker, M.; Scholl, M.; Watamura, S., Intern. J. mod. phys. A, 6, 3081, (1991) · Zbl 0736.17018
[4] Woronowicz, S.L., New quantum deformation of SL(2; \(C\))-Hopf algebra level, (1990), Warsaw University preprint · Zbl 0759.17010
[5] Schmidke, W.P.; Wess, J.; Zumino, B., Mpi-ph/91-15, (March 1991), Max Planck Institute preprint
[6] Gomez, C.; Sierra, G., Phys. lett. B, 255, 51, (1991)
[7] Ogievetsky, O.; Schmidke, W.; Wess, J.; Zumino, B., Mpi-ph/91-51, (July 1991), Max Planck Institute preprint
[8] Lukierski, J.; Nowicki, A.; Ruegg, H.; Tolstoy, V.N., Phys. lett. B, 264, 331, (1991)
[9] Dobrev, V., Canonical q-deformations of noncompact Lie (super-) algebras, (July 1991), Göttingen University preprint
[10] Celeghini, E.; Giacchetti, R.; Sorace, E.; Tarlini, M.; Celeghini, E.; Giacchetti, R.; Sorace, E.; Tarlini, M., J. math. phys., J. math. phys., 32, 1159, (1991)
[11] Celeghini, E.; Giacchetti, R.; Sorace, E.; Tarlini, M., Contractions of quantum groups, () · Zbl 0757.17011
[12] Rosso, M., Commun. math. phys., 124, 307, (1989)
[13] Tolstoy, V.N., ()
[14] S.M. Khoroshkin and V.N. Tolstoy, Universal R-matrix for quantized (super)algebras, Nuclear Physics Institute, Moscow State University, preprint 91-13/217.
[15] J. Lukierski, A. Nowicki and H. Ruegg, Geneva University preprint UGVA/DPT-08-740
[16] Phys. lett. B, 271, 321, (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.