×

zbMATH — the first resource for mathematics

Energy content of a slowly collapsing gravitating sphere. (English) Zbl 0833.53062
Summary: We discuss in detail the differences between two different definitions of energy, within a slowly evolving distribution of fluid. The conspicuous role played by the Weyl and shear tensors and their relationship with the inhomogeneity and the anisotropy of the fluid are brought out.

MSC:
53Z05 Applications of differential geometry to physics
83C40 Gravitational energy and conservation laws; groups of motions
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Misner, C., and Sharp, D. (1964).Phys. Rev. 136, B571. · doi:10.1103/PhysRev.136.B571
[2] Feynman, R., Leighton, R., and Sands, M. (1963).The Feynman Lectures on Physics (Addison-Wesley, Reading, Mass.), vol.2. · Zbl 0131.38703
[3] Cahill, M., and McVittie, G. (1970).J. Math. Phys. 11, 1382. · Zbl 0195.56301 · doi:10.1063/1.1665273
[4] Tolman, R. (1930).Phys. Rev. 35, 875. · JFM 56.0743.05 · doi:10.1103/PhysRev.35.875
[5] Møller, C. (1952).The Theory of Relativity (Claxendon, Oxford). · Zbl 0047.20602
[6] Whittaker, E. T. (1935).Proc. Roy. Soc. Lond. A149, 384.
[7] Cooperstock, F., and Sarracino, R. (1978).J. Phys. A 11, 877.
[8] Hawking, S. (1968).J. Math. Phys. 9, 598. · doi:10.1063/1.1664615
[9] Penrose, R. (1982).Proc. Roy. Soc. Lond. A381, 53; (1985).Twistor Newsletter 18; (1985).ibid. 20.
[10] Ludvigsen, M., and Vickers, J. (1983).J. Phys. A: Math. Gen. 15 L67; (1983).ibid. 16, 1155. · doi:10.1088/0305-4470/15/2/003
[11] Lynden-Bell, D., and Katz, J. (1985).Mon. Not. R. Astr. Soc. 213, 21.
[12] Brown, J. D., and York, J. W. (1993).Phys. Rev. D 47, 1407.
[13] Tod, K. (1983).Proc. Roy. Soc. Lond. A388, 457; (1986).Class. Quant. Grav. 3, 1169.
[14] Shaw, W. (1986).Class. Quant. Grav. 3, 1069. · Zbl 0605.53046 · doi:10.1088/0264-9381/3/6/010
[15] May, M., and White, R. (1966).Phys. Rev. 141, 1232. · doi:10.1103/PhysRev.141.1232
[16] Wilson, J. (1971).Astrophys. J. 163, 209. · doi:10.1086/150759
[17] Burrows, A., and Lattimer, J. (1986).Astrophys. J. 307, 178. · doi:10.1086/164405
[18] Bruenn, S. (1985).Astrophys. J. Suppl. 58, 771. · doi:10.1086/191056
[19] Adams, R., Cary, B., and Cohen, J. (1989).Astrophys. Space Sci. 155, 271. · doi:10.1007/BF00643864
[20] Bonnor, W. B. (1992).Class. Quant. Grav. 9, 269. · doi:10.1088/0264-9381/9/1/024
[21] Lightman, A., Press, W., Price, R., and Teukolsky, S. (1975).Problem Book in Relativity and Gravitation (Princeton University Press, Princeton). · Zbl 0339.53002
[22] Bondi, H. (1964).Proc. Roy. Soc. Lond. A281, 39.
[23] Schwarzschild, M.Structure and Evolution of the Stars (Dover, New York). · Zbl 0934.83001
[24] Kippenhahn, R., and Weigert, A. (1991).Stellar Structure and Evolution (Springer-Verlag, Berlin). · Zbl 1254.85001
[25] Lake, K. (1989).Phys. Rev. D40, 1344.
[26] Cooperstock, F. I., Sarracino, R. S., and Bayin, S. S. (1981).J. Phys. A 14, 181. · doi:10.1088/0305-4470/14/1/018
[27] Grøn, Ø. (1985).Phys. Rev. D 31, 2129.
[28] Devitt, J., and Florides, P. S. (1989).Gen. Rel. Grav. 21, 585. · doi:10.1007/BF00760620
[29] Florides, P. S. (1974).Proc. Roy. Soc. Lond. A337, 529.
[30] Chan, R., Herrera, L., and Santos, N. O. (1993).Mon. Not. R. Astr. Soc. 265, 533.
[31] Herrera, L., Jimenez, J., and Esculpi, M. (1988).Phys. Lett. A130, 211.
[32] Landau, L., and Lifshitz, L. (1986).Theory of Elasticity (Pergamon, Oxford). · Zbl 0178.28704
[33] Collins, C. B., and Wainwright, J. (1983).Phys. Rev. D 27, 1209.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.