×

The range of the integration map of a vector measure. (English) Zbl 0832.28014

Let be \(X\) a locally convex Hausdorff space, \(m\) a countably additive \(X\)-valued measure, \(X [m]\) the sequential closure of the linear span of the range \(m (\Sigma)\), \(L^1 (m)\) the space of the \(\mathbb{C}\)-valued \(m\)- integrable functions and \(I_m : L^1 (m) \to X\) the integration map. Several criteria are stated which ensure that \(I_m (L^1(m))\) is a sequentially closed subspace of \(X\) (in which case \(I_m (L^1(m)) = X[m])\). Also it is proved that if \(X\) is Fréchet, \(I_m\) is weakly compact and \(I_m (L^1(m))\) is infinite dimensional then \(I_m (L^1(m))\) is not closed.

MSC:

28B05 Vector-valued set functions, measures and integrals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] G. P. Curbera, Operators intoL 1 of a vector measure and applications to Banach lattices. Math. Ann.293, 317-330 (1992). · Zbl 0782.46042 · doi:10.1007/BF01444717
[2] G. P. Curbera, WhenL 1 of a vector measure is anAL-space. Pacific J. Math.162, 287-303 (1994). · Zbl 0791.46021
[3] J. Hoffmann-Jørgensen, Vector measures. Math. Scand.28, 5-32 (1971). · Zbl 0217.38001
[4] I.Kluvánek and G.Knowles, Vector measures and control systems. Amsterdam 1976. · Zbl 0316.46043
[5] H. König, Integraltheorie ohne Verbandspostulat. Math. Ann.258, 447-458 (1982). · Zbl 0477.28006 · doi:10.1007/BF01453978
[6] H.König, Daniell-Stone integration without the lattice condition and its application to uniform algebras. Ann. Univ. Sarav. Ser. Math.4 (1992). · Zbl 0773.28008
[7] M. Leinert, Daniell-Stone integration without the lattice condition. Arch. Math.8, 258-265 (1982). · Zbl 0478.28009 · doi:10.1007/BF01304785
[8] M. Leinert, Plancherel’s theorem and integration without the lattice condition. Arch. Math.42, 67-73 (1984). · Zbl 0538.28006 · doi:10.1007/BF01198130
[9] D. R. Lewis, Integration with respect to vector measures. Pacific J. Math.33, 157-165 (1970). · Zbl 0195.14303
[10] A. Liapounoff, Sur les fonctions-vecteurs complétement additives. Bull. Acad. Sci. URSS. Sér Math.4, 465-478 (1940). · JFM 66.0219.02
[11] S. Okada, The dual space ofL 1(?) for a vector measure?. J. Math. Ann. Appl.177, 583-599 (1993). · Zbl 0804.46049 · doi:10.1006/jmaa.1993.1279
[12] S. Okada andW. J. Ricker, Non-weak compactness of the integration map for vector measures. J. Austral. Math. Soc. Ser. A54, 287-303 (1993). · Zbl 0802.28005 · doi:10.1017/S1446788700031797
[13] S. Okada andW. J. Ricker, Vector measures and integration in non-complete spaces. Arch. Math.63, 344-353 (1994). · Zbl 0822.46056 · doi:10.1007/BF01189572
[14] S. Okada andW. J. Ricker, Compactness properties of the integration map associated with a vector measure. Colloq. Math.66, 175-185 (1994). · Zbl 0884.28008
[15] W. J. Ricker, Criteria for closedness of vector measures. Proc. Amer. Math. Soc.91, 75-80 (1984). · Zbl 0544.28005 · doi:10.1090/S0002-9939-1984-0735568-X
[16] W. J. Ricker, Completeness of theL 1-space of closed vector measures. Proc. Edinburgh Math. Soc.33, 71-78 (1990). · Zbl 0668.46019 · doi:10.1017/S0013091500028893
[17] W. J. Ricker, Separability of theL 1-space of a vector measure. Glasgow Math. J.34, 1-9 (1992). · Zbl 0783.46025 · doi:10.1017/S0017089500008478
[18] W. Szlenk, Sur les suites faiblements convergentes dans l’espaceL. Studia Math.25, 337-341 (1965). · Zbl 0131.11505
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.