×

zbMATH — the first resource for mathematics

Crepant resolution of trihedral singularities. (English) Zbl 0831.14006
This is an announcement of the paper reviewed above.

MSC:
14E15 Global theory and resolution of singularities (algebro-geometric aspects)
14M17 Homogeneous spaces and generalizations
14M07 Low codimension problems in algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] J. Bertin and D. Markshevich: Singularity guotients non ab6liennes de dimension 3 et varietes de Bogomolov. Prepublication de l’lnstitut Fourier, n. 216 (1992).
[2] L. E. Dickson : Algebraic Invariants. Wiley and Sons, New York (1914). · JFM 45.0196.10
[3] L. Dixon et al: Strings on orbifolds. I. Nucl. Phys., B261, 678-686 (1985).
[4] L. Dixon et al: ditto. II. ibid., B274, 285-314 (1986).
[5] R. Fricke: Lehrbuch der Algebra. II. Drunk und Verlag von Frider Vieweg und Sohn, Braunschweig (1924).
[6] F. Hirzebruch and T. Hofer: On the Euler number of an orbifold. Math. Ann., 286, 255-260 (1990). · Zbl 0679.14006
[7] Y. Kawamata: Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces. Ann. of Math., 127, 93-163 (1988). JSTOR: · Zbl 0651.14005
[8] F. Klein: Uber die erniedrigung der modulargleichungen. Math. Ann., 14, 417-471 (1879).
[9] F. Klein: Vorlesungen uber das Ikosaeder. Leipzig (1884). · JFM 16.0061.01
[10] D. Markushevich : Resolution of C /Hl6S (preprint). · Zbl 0899.14016
[11] D. G. Markushevich, M. A. Olshanetsky and A. M. Perelomov: Description of a class of superstring compactifications related to semi-simple Lie algebras. Comm. Math. Phys., 111, 247-274 (1987). · Zbl 0628.53065
[12] H. Maschke: Aufstellung des vollen formensystems einer quaternaren Gruppe von 51840 linearen substitutionen. Math. Ann., 33, 317-344 (1889). · JFM 21.0142.03
[13] G. A. Miller, H. F. Blichfeldt and L. E. Dickson: Theory and Applications of Finite Groups. John Wiley and Sons, Inc. (1916). · JFM 46.0171.02
[14] S. Mori: On 3-dimensional terminal singularities. Nagoya Math. J., 98, 43-66 (1985). · Zbl 0589.14005
[15] D. Morrison and G. Stevens: Terminal quotient singularities in dimensions three and four. Proc. AMS., 90, 15-20 (1984). · Zbl 0536.14003
[16] M. Reid : Minimal models of canonical 3-folds. Algebraic Varieties and Analytic Varieties. Advanced Studies in Pure Math., 1, Kinokuniya, Tokyo, North-Holland and Amsterdam, pp. 131-180 (1983). · Zbl 0558.14028
[17] M. Reid : Young person’s guide to canonical singularities. Algebraic Geometry. Bowdoin 1985, Proc. Symp. Pure Math., 46, AMS., 345-416 (1987). · Zbl 0634.14003
[18] S. S. Roan: On the generalization of Kummer surfaces. J. Diff. Geometry, 30, 523-537 (1989). · Zbl 0661.14031
[19] S. S. Roan: On cx = 0 resolution of quotient singularity (preprint). · Zbl 0856.14005
[20] D. Rotillon: Deux contre-examples a une conjecture de R. Stanley sur les anneaux d’invariants intersections completes. C. R. Acad. Sc. Paris, 292 (9 feeder), 345-348 (1981). · Zbl 0507.20020
[21] P. Slodowy: Simple singularities and simple algebraic groups. Lect. Notes in Math., vol. 815, Springer-Verlag (1980). · Zbl 0441.14002
[22] T. A. Springer: Invariant theory, ibid., vol. 585, Springer-Verlag (1977). · Zbl 0346.20020
[23] K-i. Watanabe: Invariant subrings which are complete intersections. I (Invariant subrings of finite abelian groups). Nagoya Math. J., 77, 89-98 (1980).
[24] K-i. Watanabe and D. Rotillon: Invariant subrings of C[X, Y, Z] which are complete intersections. Manuscripta Math., 39, 339-357 (1982). · Zbl 0515.20030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.