zbMATH — the first resource for mathematics

A reconstruction method for a two-dimensional inverse eigenvalue problem. (English) Zbl 0828.35140
Given \(\{\lambda_k : k = 1, \ldots, m\}\), the authors consider the problem of recovering a function \(q\) defined on \(R = ] 0, \pi/a [\times ]0, \pi[\) such that \(q (\pi/a - x,y) = q(x,y) = q(x, \pi - y)\) and such that \(\{\lambda_k : k = 1, \ldots, m\}\) is the set of eigenvalues of \(- \Delta u + qu = \lambda u\) in \(R\), \(u = 0\) on \(\partial R\) and, using the Rayleigh-Ritz approach of computing eigenvalues, the problem is reduced to an inverse eigenvalue problem for a matrix, as the entries of the matrix are linear combinations of Fourier coefficients of \(q\). The problem is solved if \(\lambda_k (k = 1, \ldots, m)\) are sufficiently close to the smallest \(m\) eigenvalues of the problem with \(q = 0\) and such \(m\) eigenvalues are simple or, if multiple, satisfy a convenient hypothesis.
Reviewer: G.Bottaro (Genova)

35R30 Inverse problems for PDEs
35P05 General topics in linear spectral theory for PDEs
Full Text: DOI
[1] Barcilon, V.,A two-dimensional inverse eigenvalue problem, Inverse Problems,6, 11-20 (1990). · Zbl 0712.35105 · doi:10.1088/0266-5611/6/1/004
[2] Borg, G.,Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe, Acta Math.,78, 1-96 (1946). · Zbl 0063.00523 · doi:10.1007/BF02421600
[3] Courant, C. and Hilbert, D.,Methods of Mathematical Physics, Vol. 1, Interscience Publ, New York 1953. · Zbl 0051.28802
[4] El Badia, A.,On the uniqueness of a bi-dimensional inverse spectral problem, C. R. Acad. Sci. Paris Ser. I Math,308, No. 10, 273-276 (1989). · Zbl 0679.35083
[5] Friedland, S.,The reconstruction of a symmetric matrix from the spectral data, J. Math. Anal. Appl.,71, 412-422 (1979). · Zbl 0421.65027 · doi:10.1016/0022-247X(79)90201-4
[6] Friedland, S., Nocedal, J., and Overton, M.,The formulation and analysis of numerical methods for inverse eigenvalue problems, SIAM J. Numer. Anal.,24, No. 3, 634-667 (1987). · Zbl 0622.65030 · doi:10.1137/0724043
[7] Hald, O.,The inverse Sturm-Liouville problem and the Rayleigh-Ritz method, Math. Comp.,32, No. 143, 687-705 (1978). · Zbl 0432.65050 · doi:10.1090/S0025-5718-1978-0501963-2
[8] Hald, O.,Inverse eigenvalue problems for the mantle, II, Geophys. J. of Royal Astr. Soc.,72, 139-164 (1983). · Zbl 0507.73085
[9] Kato, T.,Perturbation Theory for Linear Operators, Springer Verlag, New York 1976. · Zbl 0342.47009
[10] Kurylev, Y.,Multi-dimensional inverse boundary problems by BC-method: groups of transformations and uniqueness results, to appear J. Math. Comp. Model. · Zbl 0818.35138
[11] McLaughlin, J. R.,Analytical methods for recovering coefficients in differential equations from spectral data, SIAM Review,28, 53-72 (1986). · Zbl 0589.34024 · doi:10.1137/1028003
[12] Nachman, A., Sylvester, J., and Uhlmann, G.,An n-dimensional Borg-Levinson theorem, Comm. Math. Phys.,115, 595-605 (1988). · Zbl 0644.35095 · doi:10.1007/BF01224129
[13] Seidman, T.,An inverse eigenvalue problem with rotational symmetry, Inverse Problems,4, 1093-1115 (1988). · Zbl 0687.35108 · doi:10.1088/0266-5611/4/4/011
[14] Strang, G. and Fix, G. J.,An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ 1973. · Zbl 0356.65096
[15] Toman, S. and Pliva, J.,Multiplicity of solutions of the inverse secular problem, J. Molecular Spect.,21, 362-371 (1966). · doi:10.1016/0022-2852(66)90162-7
[16] Weinberg, H.,Variational Methods for Eigenvalue Approximation, Regional Conf. Ser. in Appl. Math., Vol 15, SIAM (1974).
[17] Willis, C.,An inverse method using toroidal mode data, Inverse Problems,2, 111-130 (1986). · Zbl 0593.73029 · doi:10.1088/0266-5611/2/1/009
[18] Yen, A.,Numerical solution of the inverse Sturm-Liouville problem, PhD Thesis, U. of California at Berkeley (1978).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.