zbMATH — the first resource for mathematics

Sperm motility in the presence of boundaries. (English) Zbl 0826.92017
Summary: The fluid dynamics of sperm motility near both rigid and elastic walls is studied using the immersed boundary method. Simulations of both single and interacting organisms are presented. In particular, we find that nearby organisms originally undulating with a \(90^\circ\) phase shift may adjust their relative swimming velocities and phase-lock. Comparisons with previous analytical results are also discussed. The tendency of a near-wall to attract organisms is demonstrated.

92C35 Physiological flow
92C99 Physiological, cellular and medical topics
Full Text: DOI
[1] Beyer, R. P. 1992. A computational model of the cochlea using the immersed boundary method.J. Comput. Phys. 98, 145–162. · Zbl 0744.76128
[2] Brennen, C. and H. Winet. 1977. Fluid mechanics of propulsion by cilia and flagella.Ann. Rev. Fluid Mech. 9, 339–398. · Zbl 0431.76100
[3] Chorin, A. J. 1968. Numerical solution of the Navier-Stokes equations.Math. Comp. 22, 745. · Zbl 0198.50103
[4] Dillon, R., L. Fauci and D. Gaver. 1995. A microscale model of microbial transport in porous media. InNumerical Methods for Water Resources. Kluwer Academic Press.
[5] Dresdner, R. D. and D. F. Katz. 1981. Relationships of mammalian sperm motility and morphology to hydrodynamic aspects of cell function.Biol. Reprod. 25, 920–930.
[6] Fauci, L. J. 1990. Interaction of oscillating filaments: a computational study.J. Comput. Phys. 86, 294–313. · Zbl 0682.76105
[7] Fauci, L. J. 1992. Peristaltic pumping of solid particles.Comp. Fluids 21, 583–598. · Zbl 0825.76603
[8] Fauci, L. J. 1993. Computational modeling of the swimming of biflagellated algal cells.Contemp. Math. 141, 91–102. · Zbl 0786.76105
[9] Fauci, L. J. and C. S. Peskin. 1988. A computational model of aquatic animal locomotion.J. Comput. Phys. 77, 85–108. · Zbl 0641.76140
[10] Fauci, L. J. and A. L. Fogelson. 1993. Truncated Newton methods and the modeling of complex immersed elastic structures.Comm. Pure Appl. Math. 46, 787–818. · Zbl 0741.76103
[11] Fogelson, A. L. 1984. A mathematical model and numerical method for studying platelet adhesion and aggregation during blood clotting.J. Comput. Phys. 56, 111–134. · Zbl 0558.92009
[12] Fogelson, A. L. and C. S. Peskin. 1988. A fast numerical method for solving the threedimensional Stokes’ equations in the presence of suspended particles.J. Comp. Phys. 79, 50–69. · Zbl 0652.76025
[13] Gray, J. and G. Hancock. 1955. The propulsion of sea-urchin spermatozoa.J. Exp. Biol. 32, 802–814.
[14] Gueron, S. and N. Liron. 1992. Ciliary motion modeling, and dynamic multicilia interactions.Biophys. J. 63, 1045–1058.
[15] Gueron, S. and N. Liron. 1993. Simulations of three-dimensional ciliary beats and cilia interactions.Biophys. J. 65, 499–507.
[16] Higdon, J. J. L. 1979a. A hydrodynamic analysis of flagellar propulsion.J. Fluid Mech. 90, 685–711. · Zbl 0412.76097
[17] Higdon, J. J. L. 1979b. The hydrodynamics analysis of flagellar propulsion: helical waves.J. Fluid Mech. 94, 331–351. · Zbl 0423.76099
[18] Higdon, J. J. L. 1979c. The generation of feeding currents by flagellar motion.J. Fluid Mech. 94, 305–330. · Zbl 0423.76100
[19] Katz, D. F. 1974. On the propulsion of micro-organisms near solid boundaries.J. Fluid Mech. 64, 33–49. · Zbl 0297.76089
[20] Katz, D. F. and S. A. Berger. 1980. Flagellar propulsion of human sperm in cervical mucus.Biorheol. 17, 169–175.
[21] Lighthill, J. L. 1976. Flagellar hydrodynamics.SIAM Rev. 18, 161–230. · Zbl 0366.76099
[22] Pedley, T. J. and J. O. Kessler. 1992. Hydrodynamic phenomena in suspensions of swimming microorganisms.Ann. Rev. Fluid Mech. 24, 313–358. · Zbl 0825.76985
[23] Peskin, C. S. 1977. Numerical analysis of blood flow in the heart.J. Comp. Phys. 25, 220–252. · Zbl 0403.76100
[24] Peskin, C. S. and D. M. McQueen. 1989a. A three-dimensional computational model for blood flow in the heart I.J. Comp. Phys. 81, 372–405. · Zbl 0668.76159
[25] Peskin, C. S. and D. M. McQueen. 1989b. A three-dimensional computational model for blood flow in the heart II.J. Comp. Phys. 82, 289–297. · Zbl 0701.76130
[26] Phan-Thien, N., T. Tran-Cong and M. Ramia. 1987. A boundary-element analysis of flagellar propulsion.J. Fluid Mech. 184, 533–549.
[27] Pozrikidis, C. 1992.Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge Texts in Applied Mathematics (1992). · Zbl 0772.76005
[28] Rothschild, L. 1963. Non-random distribution of bull spermatozoa in a drop of sperm suspension.Nature 198, 1221–1222.
[29] Winet, H., G. S. Bernstein and J. Head. 1984. Observations on the response of human spermatozoa to gravity, boundaries and fluid shear.J. Reprod. Fert. 70, 511–523.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.