×

zbMATH — the first resource for mathematics

A low-dimensional Galerkin method for the three-dimensional flow around a circular cylinder. (English) Zbl 0826.76071
Summary: A low-dimensional Galerkin method for the three-dimensional flow around a circular cylinder is constructed. The investigation of the wake solutions for a variety of basic modes, Hilbert spaces, and expansion modes reveals general mathematical and physical aspects which may strongly effect the success of low-dimensional simulations. Besides the cylinder wake, detailed information about the construction of similar low-dimensional Galerkin methods for the sphere wake, the boundary layer, the flow in a channel or pipe, the Taylor-Couette problem, and a variety of other flows is given.

MSC:
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D05 Navier-Stokes equations for incompressible viscous fluids
76D25 Wakes and jets
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] C. A. J. Fletcher, Computational Galerkin Methods (Springer-Verlag, New York, 1984), p. 30. · Zbl 0533.65069
[2] N. Aubry, P. Holmes, J. L. Lumley, and E. Stone, ”The dynamics of coherent structures in the wall region of a turbulent boundary layer,” J. Fluid Mech. 192, 115 (1988).JFLSA70022-1120 · Zbl 0643.76066
[3] X. Zhou and L. Sirovich, ”Coherence and chaos in a model of turbulence boundary layer,” Phys. Fluids A 4, 2855 (1992).PFADEB0899-8213 · Zbl 0762.76045
[4] D. Rempfer, ”Kohärente Strukturen und Chaos beim laminarturbulenten Grenzschichtumschlag,” Ph.D. thesis, Fakultät Verfahrenstechnik der Universität, Stuttgart, 1991.
[5] L. Boberg and U. Brosa, ”Onset of turbulence in a pipe,” Z. Naturforsch. 43a, 697 (1988).
[6] B. R. Noack and H. Eckelmann, ”Theoretical investigation of the cylinder wake with a low-dimensional Galerkin method,” in IUTAM-Symposium on Bluff Body Wakes, Dynamics and Instability, edited by H. Eckelmann, J. M. R. Graham, P. Huerre, and P. A. Monkewitz (Springer-Verlag, Berlin, 1993), pp. 143–146.
[7] E. N. Lorenz, ”Deterministic nonperiodic flow,” J. Atmos. Sci. 20, 130 (1963).JAHSAK0022-4928 · Zbl 1417.37129
[8] G. E. Karniadakis (personal communication, 1992).
[9] J. L. Lumley, Stochastic Tools in Turbulence (Academic, New York, 1970). · Zbl 0273.76035
[10] A. Zebib, ”Stability of viscous flow past a circular cylinder,” J. Eng. Math. 21, 155 (1987).JLEMAU0022-0833 · Zbl 0632.76063
[11] B. R. Noack and H. Eckelmann, ”On chaos in wakes,” Physica D 56, 151 (1992).PDNPDT0167-2789 · Zbl 0754.34033
[12] B. R. Noack and H. Eckelmann, ”Two-dimensional, viscous, incompressible flow around a circular cylinder,” Max-Planck-Institut für Strömungsforschung, Report No. 104/1991, Göttingen, 1991.
[13] G. E. Karniadakis and G. S. Triantafyllou, ”Three-dimensional dynamics and transition to turbulence in the wake of bluff bodies,” J. Fluid Mech. 238, 1 (1992).JFLSA70022-1120
[14] A. G. Tomboulides, G. S. Triantafyllou, and G. E. Karniadakis, ”A mechanism of period doubling in free shear flows,” Phys. Fluids A 4, 1329 (1992).PFADEB0899-8213
[15] V. A. Patel, ”Kármán vortex street behind a circular cylinder by series truncation method,” J. Comput. Phys. 28, 14 (1978).JCTPAH0021-9991
[16] F. S. Acton, Numerical Methods That Work (Harper and Row, New York, Evanston, 1970), p. 130.
[17] B. R. Noack, ”Theoretische Untersuchung der Zylinderumströmung mit einem niedrigdimensionalen Galerkin-Verfahren,” Max-Planck-Institut für Strömungsforschung, Report No. 25/1992, Göttingen, 1992.
[18] M. Van Dyke, Perturbation Methods in Fluid Mechanics (Parabolic, Stanford, 1975), p. 150 (annotated edition). · Zbl 0329.76002
[19] B. Fornberg, ”A numerical study of steady viscous flow past a circular cylinder,” J. Fluid Mech. 98, 819 (1980).JFLSA70022-1120
[20] P. J. Strykowski and K. Hannemann, ”Temporal simulation of the wake behind a circular cylinder in the neighborhood of the critical Reynolds number,” ACTA Mech. 90, 1 (1991).AMHCAP0001-5970 · Zbl 0753.76124
[21] K. R. Sreenivasan, P. J. Strykowski, and D. J. Olinger, ”Hopf bifurcation, Landau equation, and vortex shedding behind circular cylinders,” in Forum on Unsteady Flow Separation, Fluids Engineering Division Vol. 52, edited by K. N. Ghia (American Society for Mechanical Engineers, New York, 1987), p. 1.
[22] C. H. K. Williamson, ”Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers,” J. Fluid Mech. 206, 579 (1989).JFLSA70022-1120
[23] C. P. Jackson, ”A finite-element study of the onset of vortex shedding in flow past variously shaped bodies,” J. Fluid Mech. 182, 23 (1987).JFLSA70022-1120 · Zbl 0639.76041
[24] M. Provansal, C. Mathis, and L. Boyer, ”Bénard-von Kármán instability: transient and forced regimes,” J. Fluid Mech. 182, 1 (1987).JFLSA70022-1120
[25] A. Roshko, ”On the drag and shedding frequency of two-dimensional bluff bodies,” NACA Report No. 3169, Washington, D.C., 1954.
[26] C. H. K. Williamson, ”The existence of two stages in the transition to three dimensionality of a cylinder wake,” Phys. Fluids 31, 3165 (1988).PFLDAS0031-9171
[27] B. R. Noack, M. König, and H. Eckelmann, ”Three-dimensional stability analysis of the periodic flow around a circular cylinder,” Phys. Fluids A 5, 1279 (1993).PFADEB0899-8213
[28] M. König, H. Eisenlohr, and H. Eckelmann, ”The fine structure in the Strouhal-Reynolds number relationship of the laminar wake of a circular cylinder,” Phys. Fluids A 2, 1607 (1990).PFADEB0899-8213
[29] C. H. K. Williamson, ”Defining a universal and continuous Strouhal-Reynolds number relationship for the laminar vortex shedding of a circular cylinder,” Phys. Fluids 31, 2742 (1988).PFLDAS0031-9171
[30] B. R. Noack, ”Untersuchung chaotischer Phänomene in der Nachlaufströmung,” Max-Planck-Institut für Strömungsforschung, Report No. 111/1990, Göttingen, 1990.
[31] B. R. Noack and F. Obermeier, ”A chaos-theoretical investigation of the wake behind a cylinder,” Z. Angew. Math. Mech. 71, T259 (1991).ZAMMAX0044-2267
[32] D. Rempfer, ”Low-dimensional modes of a flat-plate boundary layer,” in Near-Wall Turbulent Flows, edited by R. M. C. So, C. G. Speziale, and B. E. Launder (Elsevier, Amsterdam, 1993), pp. 63–72.
[33] L. Sirovich, ”Chaotic dynamics of coherent structures,” Physica D 37, 561 (1989).PDNPDT0167-2789
[34] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow (Gordon and Breach, New York, 1963), p. 155.
[35] G. E. Karniadakis, ”Spectral element simulations of laminar and turbulent flows in complex geometries,” Appl. Numer. Math. 6, 85 (1989/ 1990).ANMAEL0168-9274 · Zbl 0678.76050
[36] M. König, B. R. Noack, and H. Eckelmann, ”Descrite shedding modes in the von Kármán vortex street,” Phys. Fluids A 5, 1846 (1993).PFADEB0899-8213
[37] B. R. Noack and H. Eckelmann, ”Theoretical investigation of the bifurcations and the turbulence attractor of the cylinder wake,” to appear in Z. Angew. Math. Mech. · Zbl 0800.76220
[38] A. E. Deane, I. G. Kevrekidis, G. E. Karniadakis, and S. A. Orszag, ”Low-dimensional models for complex geometry flows: Application to grooved channels and circular cylinders,” Phys. Fluids A 3, 2337 (1991).PFADEB0899-8213 · Zbl 0746.76021
[39] B. R. Noack and H. Eckelmann, ”A Galerkin study of the cylinder ake,” Max-Planck-Institut für Strömungsforschung, Report No. 101/1991, Göttingen, 1991.
[40] A. G. Tomboulides, M. Israeli, and G. E. Karniadakis, ”Viscous-sponge outflow condition for incompressible flows,” Mini-symposium on Outflow Boundary Conditions, Stanford, August 1991.
[41] L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Course of Theoretical Physics (Pergamon, Oxford, 1987), Vol. 6, p. 56.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.