×

zbMATH — the first resource for mathematics

On the role of linear mechanisms in transition to turbulence. (English) Zbl 0826.76035
Summary: Recent work has shown that linear mechanisms can lead to substantial transient growth in the energy of small disturbances in incompressible flows even when the Reynolds number is below the critical value predicted by linear stability (eigenvalue) analysis. In this note it is shown that linear growth mechanisms are necessary for transition in flows governed by the incompressible Navier-Stokes equations and that non-normality of the linearized Navier-Stokes operator is a necessary condition for subcritical transition.

MSC:
76E99 Hydrodynamic stability
76D05 Navier-Stokes equations for incompressible viscous fluids
76F99 Turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112082002006
[2] DOI: 10.1017/S0022112091003130 · Zbl 0850.76256
[3] DOI: 10.1017/S0022112069000115
[4] DOI: 10.1017/S0022112092001046
[5] DOI: 10.1017/S0022112083000099 · Zbl 0517.76050
[6] DOI: 10.1146/annurev.fl.20.010188.002415
[7] DOI: 10.1063/1.861156 · Zbl 0308.76030
[8] DOI: 10.1017/S0022112080000122 · Zbl 0428.76049
[9] DOI: 10.1137/0128061 · Zbl 0276.76023
[10] DOI: 10.1002/sapm199287161 · Zbl 0751.76029
[11] DOI: 10.1063/1.858386
[12] DOI: 10.1063/1.858574 · Zbl 0779.76030
[13] DOI: 10.1017/S002211209100174X · Zbl 0717.76044
[14] DOI: 10.1017/S0022112093003738 · Zbl 0789.76026
[15] DOI: 10.1126/science.261.5121.578 · Zbl 1226.76013
[16] M’F. Orr W., Proc. R. Irish Acad. A 27 pp 69– (1907)
[17] DOI: 10.1017/S0022112093001429 · Zbl 0773.76030
[18] DOI: 10.1063/1.858367
[19] Sattinger D. H., J. Math. Mech. 19 pp 797– (1969)
[20] DOI: 10.1007/BF00276872 · Zbl 0622.76061
[21] DOI: 10.1007/BF00284160
[22] DOI: 10.1007/BF00375129 · Zbl 0719.76035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.