×

zbMATH — the first resource for mathematics

A new approach to algorithms for convection problems which are based on exact transport + projection. (English) Zbl 0825.76413

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76R99 Diffusion and convection
Software:
SHASTA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Boris, J.P.; Book, D.L., Flux corrected transport 1, SHASTA, a fluid transport algorithm that works, J. comput. phys., 11, 38-69, (1973) · Zbl 0251.76004
[2] Colella, P.; Woodard, P., The piecewise parabolic method (PPM) for gasdynamical simulations, J. comput. phys., 54, 174-201, (1985)
[3] Van Leer, B., Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method, J. comput. phys., 32, 101-136, (1979) · Zbl 1364.65223
[4] Zalesak, S., Fully multidimensional flux corrected transport algorithms for fluids, J. comput. phys., 31, 335-362, (1979) · Zbl 0416.76002
[5] C. Dawson, T. Russell and M. Wheeler, Some improved error estimates for the modified method of characteristics, SIAM J. Numer. Anal., in press. · Zbl 0693.65062
[6] Douglas, J.; Russell, T., Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite differences procedures, SIAM J. numer. anal., 19, 871-885, (1982) · Zbl 0492.65051
[7] Morton, K.W., Generalized Galerkin methods for hyperbolic problems, Comput. methods appl. mech. engrg., 52, 847-871, (1985) · Zbl 0568.76007
[8] Temperton, C.; Staniforth, A., An efficient two-time-level semi-Lagrangean semi-implicit integration scheme, Quart. J. roy. meteorol. soc., 113, 1039-1075, (1987)
[9] Johnson, C., The characteristics streamline diffusion finite element method, (), in press · Zbl 0694.76036
[10] Eriksson, K.; Johnson, C., Adaptive streamline diffusion finite element methods for convection-diffusion problems, () · Zbl 0795.65074
[11] Hansbo, P., The characteristics streamline diffusion method for convection-diffusion problems, Comput. methods appl. mech. engrg., 96, 239-253, (1992) · Zbl 0753.76095
[12] Hansbo, P., The characteristic streamline diffusion method for the time-dependent incompressible Navier-strokes equations, Comput. methods appl. mech. engrg., 99, 171-186, (1992) · Zbl 0825.76423
[13] Ewing, R.E.; Russell, T.F.; Wheeler, M.F., Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics, Comput. methods appl. mech. engrg., 47, 73-92, (1984) · Zbl 0545.76131
[14] Pironneau, O., On the transport-diffusion algorithm and its application to the Navier-Stokes equation, Numer. math, 38, 309-332, (1982) · Zbl 0505.76100
[15] Johnson, C.; Szepessy, A., On the convergence of a finite element method for a nonlinear hyperbolic conservation law, Math. comp., 49, 427-444, (1987) · Zbl 0634.65075
[16] Szepessy, A., Convergence of the streamline diffusion finite element method for conservation laws, () · Zbl 0751.65061
[17] Hansbo, P., Adaptivity and streamline diffusion procedures in the finite element method, () · Zbl 0874.76036
[18] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic probelms I: A linear model problem, SIAM J. Numer. Anal., in press. · Zbl 0732.65093
[19] Eriksson, K.; Johnson, G., Adaptive finite element methods for parabolic problems II: A priori error estimates in L∞(L2) and L∞(L∞), ()
[20] Johnson, C.; Nävert, U.; Pitkäranta, J., Finite element methods for linear hyperbolic equations, Comput. methods appl. mech. engrg., 45, 285-312, (1984) · Zbl 0526.76087
[21] Petterson, T., ()
[22] Johnson, C.; Szepessy, A.; Hansbo, P., On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws, Math. comp., 54, 82-107, (1990) · Zbl 0685.65086
[23] Szepessy, A., Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions, Math comp., 53, 510-527, (1989) · Zbl 0679.65072
[24] Hansbo, P.; Szepessy, A., A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations, Comput. methods appl. mech. engrg., 84, 175-192, (1990) · Zbl 0716.76048
[25] Johnson, C.; Saranen, J., Streamline diffusion finite element methods for the incompressible Euler and Navier-Stokes equations, Math. comp., 47, 1-18, (1986) · Zbl 0609.76020
[26] Hughes, T.J.R.; Hughes, T.J.R.; Hughes, T.J.R.; Hughes, T.J.R., A new finite element method formulation for computational fluid dynamics I-IV, Comput. methods appl. mech. engrg., Comput. methods appl. mech. engrg., Comput. methods appl. mech. engrg., Comput. methods appl. mech. engrg., 58, 329-336, (1986) · Zbl 0572.76068
[27] Johnson, C.; Schatz, A.; Wahlbin, L., Crosswind smear and pointwise errors in the streamline diffusion finite element methods, Math. comp., 47, 427-444, (1987) · Zbl 0629.65111
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.